
spcl.inf.ethz.ch

@spcl_eth

Parallel Programming Exercise 14



spcl.inf.ethz.ch

@spcl_eth

▪ Post-Discussion: Assignment 13

▪ Pre-Discussion: Assignment 14

▪ Theory

▪ Exam Tasks & Tips
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Outline
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Post-Discussion Assignment 13
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Sequential Consistency

For each of the following histories, indicate if they are
sequentially consistent or not

registers: r and s
queue: q
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Sequential Consistency

For each of the following histories, indicate if they are
sequentially consistent or not

registers: r and s
queue: q
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Linearizability

Infer the object type from the supported operations,
registers are initially zero, stacks/queues initially empty.
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Linearizability

Infer the object type from the supported operations,
registers are initially zero, stacks/queues initially empty.



spcl.inf.ethz.ch

@spcl_eth

For all threads T: H|T = G|T
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Equivalence

is equivalent to
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Incomplete Histories

When histories are obtained from a program trace, the history might be incomplete.
This can be dealt with in two ways. 
Why do we need both ways? Give an example where discarding all pending invocations will lead to
a non-linearizable history, but adding a response will lead to a linearizable history.

remove pending
invocations

add response
at the end of
the history

not linearizable

linearizable
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Sequential Consistency vs Linearizability

SC but not linearizable
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Pre-Discussion Assignment 14
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▪ Code snippets: argue about consistency (result same for each thread), validity (result was proposed by a 
thread) and wait-freedom

▪ Implement consensus protocol with wait-free FIFO queue

▪ Equivalence between consensus and binary consensus for two threads
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Consensus



spcl.inf.ethz.ch

@spcl_eth

13

Theory
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Recap: Consensus Protocols

I propose 
“23”.

I propose 
“42”.

A few moments later…
(a finite number of steps)

We 
agreed 
on“23”.

We 
agreed 
on “23”

Which other 
scenarios are 
allowed?
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Consistent Result

I propose 
“23”.

I propose 
“42”.

We 
agreed 
on“23”.

We 
agreed 
on “42”

This is illegal!

Consensus result needs to be 
consistent: the same on all threads.
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Valid Result

I propose 
“23”.

I propose 
“42”.

We 
agreed 

on“420”.
We 

agreed 
on “420”

This is illegal!

Consensus result needs to be valid: 
proposed by some thread.
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Wait-Free

I propose 
“23”.

I propose 
“42”.

I cannot finish 
because I am 

waiting for 
the other 
thread.

This is illegal!

Consensus needs to be wait-free: 
All threads finish after a finite 
number of steps, independent of 
other threads.

I will not 
schedule you 

now!
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Example: Databases (of social networks) 
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Consensus: Motivation
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Example: Databases (of social networks) 
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Consensus: Motivation

High latency
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Example: Databases (of social networks) 
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Consensus: Motivation

Problem: data consistency
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„The consensus number of a concurrent object is defined to be the maximum 
number of processes in the system which can reach consensus by the given
object in a wait-free implementation. “

atomic read/write registers, mutex: 1

TAS, wait-free queue & stack: 2

CAS: ∞

Note: wait-free queue & stack cannot be implemented with atomic read/write
registers

21

Consensus Number
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Proof: There is no wait-free implementation of n-thread consensus (n > 1) with atomic read/write registers. 

22

Atomic read/write registers: Consensus Number 1
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Proof that is does not work for 2 threads to show that it does not work for n threads.

Why can we make this assumption?

Assume our consensus protocol is correct (consistent, valid, wait-free).

Assume n - 2 threads die / get descheduled.

Since our consensus is wait-free, it should still work for the two remaining threads.

23

Proof simplification
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▪ Instead of proposing an integer, every thread now proposes either 0 or 1

▪ Equivalent to “normal” consensus for two threads

▪ How can we proof this?

24

Simplification: Binary Consensus

binary_decide(bit b) {
  return int_decide(b)
}

int_decide(int d) {
  prop[id] = d; //prop is shared
  other = (id + 1)%2;
  int win = bin_decide(id);
  return prop[win];
}

We can implement binary 
consensus using normal 
consensus.

We can implement binary 
consensus using normal consensus 
(id in {0,1} and unique).
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State Diagrams of Two-thread Consensus Protocols

Start state, both threads (A and B) 
have not yet executed the first 
instruction of the consensus 

protocol.

Each state has at most two successors:  
Either A or B execute an instruction.

Cycles among states cannot exist in a 
wait-free algorithm: The state “looks” 

the same each time we visit, so we 
are trapped forever in the loop and 

not wait-free.
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Anatomy of a State (in two-thread consensus)

Shared Variables

Thread local 
variables of A Thread local 

variables of B

Program 
counter of A

Program 
counter of B
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Anatomy of a State

Shared Variables
r1=3

Thread local 
variables of A

x=2

Thread local 
variables of B

y=0

Program 
counter of A

S3

Program 
counter of B

S1
Shared Variables

r1=3

Thread local 
variables of A

x=1

Thread local 
variables of B

y=0

Program 
counter of A

S5

Program 
counter of B

S1

The states are different, since A has 
different local variables and program 
counter values.

Yet from B’s perspective they look the 
same! (Until A writes x into a shared 
variable!)
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Critical States

0|1?

There is always at least one bivalent 
state (the start state).

0|1 0|1

1 1 0 1

0|1 11

Output states are always 
univalent.

Frm this state we only reach 
states with output 1, so it is 

also univalent.

This state is bivalent but all 
his successors are univalent. 
We call such states critical.
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Quiz: Label the States

1 1 0 1

Output states are always 
univalent.

Output states are always 
univalent.

Output states are always 
univalent.

This state is bivalent, as we 
can reach 0 and 1 output 

states.

It is also critical, since it is 
bivalent and all its successors 

are univalent.

This state is bivalent, as we 
can reach 0 and 1 output 

states.
The start state is always 

bivalent!

This state is bivalent, as we 
can reach 0 and 1 output 

states.



spcl.inf.ethz.ch

@spcl_eth

30

Critical State Existence Proof

Lemma: Every consensus protocol has a 
critical state.

Proof: From (bivalent) start state, let the treads only 
move to other bivalent states.

• If it runs forever the protocol is not wait free. 

• If it reaches a position where no moves are possible 
this state is critical.
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Impossibility Proof Setup – Critical State

0|1?

0 1

Assume we are in the critical 
state (which must exist).

Assume that if A moves next 
we end up with 0, if B moves 

next we end up with 1. 
(w.l.o.g., can switch names)

B moves 
first

A moves 
first

So what actions can a thread 
perform in his “move”?

Either read or write a shared 
register! – Let’s see why.
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Impossibility Proof Setup – Possible actions of a thread

0|1? So what actions can a thread 
perform in his “move”?

What happens if A just reads 
from and writes to local vars?

critical

A: x=y+z 
(x,y,z: local)

0

Output must 
be 0

Output must 
be 1

Now the 
scheduler 

pauses A, and 
B runs solo

From B’s perspective 
these two states look 

exactly the same! 
B cannot know that 
one of them must 

output 0!

Conclusion: First instruction 
after critical state must be a 
read or write of a shared 
variable!
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Impossibility Proof Setup – Possible actions of a thread

0|1?

0 1

A moves 
first

B moves 
first

We know reading/writing 
local variables cannot lead 

out of a critical state – what 
remains?

A can read a 
shared variable

A can write a 
shared variable

B can read the 
same variable

B can read a 
different variable

B can write the 
same variable

B can write a 
different variable

Many cases…
let’s make tables 
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Many Cases to check

First Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

Second 
Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

Is binary 
consensus 

possible for any 
of those?

Can we simplify 
somehow?

Let’s say A always moves first,
otherwise, switch names.

Second Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

First
 Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()
Similarly, we can call the 
register A reads r1 in both 
cases.

First Action

A: r1.read() A: r1.write()

Second 
Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

Managable… Let’s look at the cases where A reads
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Impossibility Proof Case I: A reads

0|1?

Output is decided (0) 
due to critical state.

A reads B does X Output is decided (1) 
due to critical state.

B does X

From B’s perspective 
these two states look 

exactly the same! 
However B needs to 

output different 
values!
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What did we just prove?

First Action

A: r1.read() A: r1.write()

Second 
Action

B: r1.read() No, Case I

B: r2.read() No, Case I

B: r1.write() No, Case I

B: r2.write() No, Case I

Is binary 
consensus 

possible for any 
of those?
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Impossibility Proof Case I’: B reads

0|1?

Output is decided (0) 
due to critical state.

B reads A writes Output is decided (1) 
due to critical state.

A writes

From A’s perspective 
these two states look 

exactly the same! 
However A needs to 
(eventually) output 

different values!
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What did we just prove?

First Action

A: r1.read() A: r1.write()

Second 
Action

B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I

B: r2.write() No, Case I

Is binary 
consensus 

possible for any 
of those?
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Impossibility Proof Case II: A and B write to different registers

0|1?

Output is decided (0) 
due to critical state.

A writes r1 B writes r2 Output is decided (1) 
due to critical state.

B writes r2

Exactly the same state!

 However it should be outputting 0 
/ 1 depending on where it was 

reached from!

A writes r1

Output 0

Output 1
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What did we just prove?

First Action

A: r1.read() A: r1.write()

Second 
Action

B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I ?

B: r2.write() No, Case I No, Case II

Is binary 
consensus 

possible for any 
of those?
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Impossibility Proof Case III: A and B write to the same register

0|1?

Output is decided (0) 
due to critical state.

A writes r B writes r Output is decided (1) 
due to critical state.

B writes r

From B’s perspective 
these two states look 

exactly the same! 
However B needs to 

output different 
values!
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That’s all

First Action

A: r1.read() A: r1.write()

Second 
Action

B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I No, Case III

B: r2.write() No, Case I No, Case II

Is binary 
consensus 

possible for any 
of those?

No

1985, 2.5k citations
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▪ Atomic read/write registers have consensus number 1

43

What did we prove?
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Proof: TAS has consensus number 2

44

Consensus: TAS consensus number
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▪ First proof that TAS has consensus number n >= 2 by construction

▪ Then proof that TAS has consensus number n < 3 by contradiction

➔ n needs to be 2

45

Proof outline
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▪ Assume you have a machine with atomic registers and an atomic test-and-set operation with the 
following semantics (mem[s] is initially 0):

boolean TAS(memref s) {

    if (mem[s] == 0) {

        mem[s] = 1;

        return true;

    }

    return false;

}

▪ Implement a wait-free two-process consensus protocol using TAS and atomic registers.

46

Implementing two thread consensus with TAS
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▪ Pseudo-Code for both threads

AtomicIntegerArray proposed = new AtomicIntegerArray(2);

flag = 0;

int decide (int value) {

 int i = ThreadID.get();

 proposed.set(i, value);

 if (TAS(flag)) {

  return value;

 }

 else {

  return proposed.get((i + 1) % 2);

 }

}

47

Implementing two thread consensus - Solution
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▪ Assume there exist some correct wait-free consensus protocol with TAS for n > 2 threads.

▪ Proof that it does not work for 3 threads (which implies that it does not work for n > 3 threads)

▪ Go over all cases just like in the proof for atomic read/write registers

▪ Difference to proof for atomic read/write registers

▪ Each node can have 3 children

▪ Multivalent would be a better word for states that did not decide yet

48

TAS consensus number: proof outline that n < 3
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Proof: CAS has consensus number ∞

49

Consensus: CAS consensus number
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Proof by construction: CAS consensus number ∞
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▪ Know about properties: consistent, valid, wait-free

▪ Bivalent, univalent, critical state

▪ Argue about properties: why acyclic graph?

▪ Know consensus numbers

▪ Argue with consensus numbers

51

Consensus: What should you definitely know for the exam
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MPI (Message Passing Interface)
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▪ Locking is too slow

▪ Shared memory is not always viable 

▪ What if we have multiple compute nodes and want to distribute work?

53

MPI: Motivation
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▪ Connect many different computers (cluster) and let them communicate with each other over high speed
interconnects (e.g. Infiniband)

▪ Example: Dragonfly-Topology

54

High Performance Computing: Supercomputers



spcl.inf.ethz.ch

@spcl_eth

55

Infiniband demo
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▪ Message Passing Interface defines the semantics

▪ There are many different MPI implementations: e.g. OpenMPI, MPICH

→ When you build a program using MPI, you can decide which implementation to use

→ Different implementations can lead to different performance, but the semantic is the same as defined by
the MPI standard

→ One is also free to choose the number of MPI-ranks & processes

56

MPI
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MPI

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
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MPI

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
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MPI barrier

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
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Collective Computation paradigms

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
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Collective Computation paradigms

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
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Exam tasks
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Not valid correct
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Not wait free Not consistent
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No, as using locks can lead to threads blocking each other
→ Not wait-free
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one
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one

Yes
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1

2

∞
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Point-to-Point: One sender to one receiver
Collective operations: see previous slide about „collective computation paradigms“

We mainly use collective operations to get scalable performance
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Gather and Broadcast
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We have point-to-
point communication
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▪ Revise topics to get an overview over everything

▪ Practice some „easy points“ tasks until you are comfortable with them (always the same pattern)

▪ Amdahl, Gustafson, Pipelining, Histories, State Diagrams, Fork-Join, etc.

▪ Practice harder tasks (some „creativity“ needed)

▪ Wait / notify, questions about properties of locks, barriers, code snippets, etc.

▪ Practice „Mixer“ tasks

▪ Very unpredictable

▪ Revise theory; try to understand and make connections between different concepts

▪ Practice some old exams without a timer first

▪ Identify tasks where you struggle→ specifically practice those tasks and skip easy tasks

▪ Try to solve under time contraints when you feel comfortable with the tasks and theory

▪ Try to conclude how much time to invest for each task based on the assigned points

79

Advice / Outline for exam preparation
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▪ https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm

▪ PVW script

▪ Summaries on ComSol (https://exams.vis.ethz.ch/) 

▪ The Art of Multithreading book

80

Good theory overview
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Viel Glück und Erfolg für die Prüfung!!
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