
spcl.inf.ethz.ch

@spcl_eth

Parallel Programming Exercise 14

spcl.inf.ethz.ch

@spcl_eth

▪ Post-Discussion: Assignment 13

▪ Pre-Discussion: Assignment 14

▪ Theory

▪ Exam Tasks & Tips

2

Outline

spcl.inf.ethz.ch

@spcl_eth

3

Post-Discussion Assignment 13

spcl.inf.ethz.ch

@spcl_eth

4

Sequential Consistency

For each of the following histories, indicate if they are
sequentially consistent or not

registers: r and s
queue: q

spcl.inf.ethz.ch

@spcl_eth

5

Sequential Consistency

For each of the following histories, indicate if they are
sequentially consistent or not

registers: r and s
queue: q

spcl.inf.ethz.ch

@spcl_eth

6

Linearizability

Infer the object type from the supported operations,
registers are initially zero, stacks/queues initially empty.

spcl.inf.ethz.ch

@spcl_eth

7

Linearizability

Infer the object type from the supported operations,
registers are initially zero, stacks/queues initially empty.

spcl.inf.ethz.ch

@spcl_eth

For all threads T: H|T = G|T

8

Equivalence

is equivalent to

spcl.inf.ethz.ch

@spcl_eth

9

Incomplete Histories

When histories are obtained from a program trace, the history might be incomplete.
This can be dealt with in two ways.
Why do we need both ways? Give an example where discarding all pending invocations will lead to
a non-linearizable history, but adding a response will lead to a linearizable history.

remove pending
invocations

add response
at the end of
the history

not linearizable

linearizable

spcl.inf.ethz.ch

@spcl_eth

10

Sequential Consistency vs Linearizability

SC but not linearizable

spcl.inf.ethz.ch

@spcl_eth

11

Pre-Discussion Assignment 14

spcl.inf.ethz.ch

@spcl_eth

▪ Code snippets: argue about consistency (result same for each thread), validity (result was proposed by a
thread) and wait-freedom

▪ Implement consensus protocol with wait-free FIFO queue

▪ Equivalence between consensus and binary consensus for two threads

12

Consensus

spcl.inf.ethz.ch

@spcl_eth

13

Theory

spcl.inf.ethz.ch

@spcl_eth

14

Recap: Consensus Protocols

I propose
“23”.

I propose
“42”.

A few moments later…
(a finite number of steps)

We
agreed
on“23”.

We
agreed
on “23”

Which other
scenarios are
allowed?

spcl.inf.ethz.ch

@spcl_eth

15

Consistent Result

I propose
“23”.

I propose
“42”.

We
agreed
on“23”.

We
agreed
on “42”

This is illegal!

Consensus result needs to be
consistent: the same on all threads.

spcl.inf.ethz.ch

@spcl_eth

16

Valid Result

I propose
“23”.

I propose
“42”.

We
agreed

on“420”.
We

agreed
on “420”

This is illegal!

Consensus result needs to be valid:
proposed by some thread.

spcl.inf.ethz.ch

@spcl_eth

17

Wait-Free

I propose
“23”.

I propose
“42”.

I cannot finish
because I am

waiting for
the other
thread.

This is illegal!

Consensus needs to be wait-free:
All threads finish after a finite
number of steps, independent of
other threads.

I will not
schedule you

now!

spcl.inf.ethz.ch

@spcl_eth

Example: Databases (of social networks)

18

Consensus: Motivation

spcl.inf.ethz.ch

@spcl_eth

Example: Databases (of social networks)

19

Consensus: Motivation

High latency

spcl.inf.ethz.ch

@spcl_eth

Example: Databases (of social networks)

20

Consensus: Motivation

Problem: data consistency

spcl.inf.ethz.ch

@spcl_eth

„The consensus number of a concurrent object is defined to be the maximum
number of processes in the system which can reach consensus by the given
object in a wait-free implementation. “

atomic read/write registers, mutex: 1

TAS, wait-free queue & stack: 2

CAS: ∞

Note: wait-free queue & stack cannot be implemented with atomic read/write
registers

21

Consensus Number

spcl.inf.ethz.ch

@spcl_eth

Proof: There is no wait-free implementation of n-thread consensus (n > 1) with atomic read/write registers.

22

Atomic read/write registers: Consensus Number 1

spcl.inf.ethz.ch

@spcl_eth

Proof that is does not work for 2 threads to show that it does not work for n threads.

Why can we make this assumption?

Assume our consensus protocol is correct (consistent, valid, wait-free).

Assume n - 2 threads die / get descheduled.

Since our consensus is wait-free, it should still work for the two remaining threads.

23

Proof simplification

spcl.inf.ethz.ch

@spcl_eth

▪ Instead of proposing an integer, every thread now proposes either 0 or 1

▪ Equivalent to “normal” consensus for two threads

▪ How can we proof this?

24

Simplification: Binary Consensus

binary_decide(bit b) {
 return int_decide(b)
}

int_decide(int d) {
 prop[id] = d; //prop is shared
 other = (id + 1)%2;
 int win = bin_decide(id);
 return prop[win];
}

We can implement binary
consensus using normal
consensus.

We can implement binary
consensus using normal consensus
(id in {0,1} and unique).

spcl.inf.ethz.ch

@spcl_eth

25

State Diagrams of Two-thread Consensus Protocols

Start state, both threads (A and B)
have not yet executed the first
instruction of the consensus

protocol.

Each state has at most two successors:
Either A or B execute an instruction.

Cycles among states cannot exist in a
wait-free algorithm: The state “looks”

the same each time we visit, so we
are trapped forever in the loop and

not wait-free.

spcl.inf.ethz.ch

@spcl_eth

26

Anatomy of a State (in two-thread consensus)

Shared Variables

Thread local
variables of A Thread local

variables of B

Program
counter of A

Program
counter of B

spcl.inf.ethz.ch

@spcl_eth

27

Anatomy of a State

Shared Variables
r1=3

Thread local
variables of A

x=2

Thread local
variables of B

y=0

Program
counter of A

S3

Program
counter of B

S1
Shared Variables

r1=3

Thread local
variables of A

x=1

Thread local
variables of B

y=0

Program
counter of A

S5

Program
counter of B

S1

The states are different, since A has
different local variables and program
counter values.

Yet from B’s perspective they look the
same! (Until A writes x into a shared
variable!)

spcl.inf.ethz.ch

@spcl_eth

28

Critical States

0|1?

There is always at least one bivalent
state (the start state).

0|1 0|1

1 1 0 1

0|1 11

Output states are always
univalent.

Frm this state we only reach
states with output 1, so it is

also univalent.

This state is bivalent but all
his successors are univalent.
We call such states critical.

spcl.inf.ethz.ch

@spcl_eth

29

Quiz: Label the States

1 1 0 1

Output states are always
univalent.

Output states are always
univalent.

Output states are always
univalent.

This state is bivalent, as we
can reach 0 and 1 output

states.

It is also critical, since it is
bivalent and all its successors

are univalent.

This state is bivalent, as we
can reach 0 and 1 output

states.
The start state is always

bivalent!

This state is bivalent, as we
can reach 0 and 1 output

states.

spcl.inf.ethz.ch

@spcl_eth

30

Critical State Existence Proof

Lemma: Every consensus protocol has a
critical state.

Proof: From (bivalent) start state, let the treads only
move to other bivalent states.

• If it runs forever the protocol is not wait free.

• If it reaches a position where no moves are possible
this state is critical.

spcl.inf.ethz.ch

@spcl_eth

31

Impossibility Proof Setup – Critical State

0|1?

0 1

Assume we are in the critical
state (which must exist).

Assume that if A moves next
we end up with 0, if B moves

next we end up with 1.
(w.l.o.g., can switch names)

B moves
first

A moves
first

So what actions can a thread
perform in his “move”?

Either read or write a shared
register! – Let’s see why.

spcl.inf.ethz.ch

@spcl_eth

32

Impossibility Proof Setup – Possible actions of a thread

0|1? So what actions can a thread
perform in his “move”?

What happens if A just reads
from and writes to local vars?

critical

A: x=y+z
(x,y,z: local)

0

Output must
be 0

Output must
be 1

Now the
scheduler

pauses A, and
B runs solo

From B’s perspective
these two states look

exactly the same!
B cannot know that
one of them must

output 0!

Conclusion: First instruction
after critical state must be a
read or write of a shared
variable!

spcl.inf.ethz.ch

@spcl_eth

33

Impossibility Proof Setup – Possible actions of a thread

0|1?

0 1

A moves
first

B moves
first

We know reading/writing
local variables cannot lead

out of a critical state – what
remains?

A can read a
shared variable

A can write a
shared variable

B can read the
same variable

B can read a
different variable

B can write the
same variable

B can write a
different variable

Many cases…
let’s make tables

spcl.inf.ethz.ch

@spcl_eth

34

Many Cases to check

First Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

Second
Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

Is binary
consensus

possible for any
of those?

Can we simplify
somehow?

Let’s say A always moves first,
otherwise, switch names.

Second Action

A: r1.read() A: r2.read() A: r1.write() A: r2.write()

First
 Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()
Similarly, we can call the
register A reads r1 in both
cases.

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read()

B: r2.read()

B: r1.write()

B: r2.write()

Managable… Let’s look at the cases where A reads

spcl.inf.ethz.ch

@spcl_eth

35

Impossibility Proof Case I: A reads

0|1?

Output is decided (0)
due to critical state.

A reads B does X Output is decided (1)
due to critical state.

B does X

From B’s perspective
these two states look

exactly the same!
However B needs to

output different
values!

spcl.inf.ethz.ch

@spcl_eth

36

What did we just prove?

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read() No, Case I

B: r2.read() No, Case I

B: r1.write() No, Case I

B: r2.write() No, Case I

Is binary
consensus

possible for any
of those?

spcl.inf.ethz.ch

@spcl_eth

37

Impossibility Proof Case I’: B reads

0|1?

Output is decided (0)
due to critical state.

B reads A writes Output is decided (1)
due to critical state.

A writes

From A’s perspective
these two states look

exactly the same!
However A needs to
(eventually) output

different values!

spcl.inf.ethz.ch

@spcl_eth

38

What did we just prove?

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I

B: r2.write() No, Case I

Is binary
consensus

possible for any
of those?

spcl.inf.ethz.ch

@spcl_eth

39

Impossibility Proof Case II: A and B write to different registers

0|1?

Output is decided (0)
due to critical state.

A writes r1 B writes r2 Output is decided (1)
due to critical state.

B writes r2

Exactly the same state!

 However it should be outputting 0
/ 1 depending on where it was

reached from!

A writes r1

Output 0

Output 1

spcl.inf.ethz.ch

@spcl_eth

40

What did we just prove?

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I ?

B: r2.write() No, Case I No, Case II

Is binary
consensus

possible for any
of those?

spcl.inf.ethz.ch

@spcl_eth

41

Impossibility Proof Case III: A and B write to the same register

0|1?

Output is decided (0)
due to critical state.

A writes r B writes r Output is decided (1)
due to critical state.

B writes r

From B’s perspective
these two states look

exactly the same!
However B needs to

output different
values!

spcl.inf.ethz.ch

@spcl_eth

42

That’s all

First Action

A: r1.read() A: r1.write()

Second
Action

B: r1.read() No, Case I No, Case I’

B: r2.read() No, Case I No, Case I’

B: r1.write() No, Case I No, Case III

B: r2.write() No, Case I No, Case II

Is binary
consensus

possible for any
of those?

No

1985, 2.5k citations

spcl.inf.ethz.ch

@spcl_eth

▪ Atomic read/write registers have consensus number 1

43

What did we prove?

spcl.inf.ethz.ch

@spcl_eth

Proof: TAS has consensus number 2

44

Consensus: TAS consensus number

spcl.inf.ethz.ch

@spcl_eth

▪ First proof that TAS has consensus number n >= 2 by construction

▪ Then proof that TAS has consensus number n < 3 by contradiction

➔ n needs to be 2

45

Proof outline

spcl.inf.ethz.ch

@spcl_eth

▪ Assume you have a machine with atomic registers and an atomic test-and-set operation with the
following semantics (mem[s] is initially 0):

boolean TAS(memref s) {

 if (mem[s] == 0) {

 mem[s] = 1;

 return true;

 }

 return false;

}

▪ Implement a wait-free two-process consensus protocol using TAS and atomic registers.

46

Implementing two thread consensus with TAS

spcl.inf.ethz.ch

@spcl_eth

▪ Pseudo-Code for both threads

AtomicIntegerArray proposed = new AtomicIntegerArray(2);

flag = 0;

int decide (int value) {

 int i = ThreadID.get();

 proposed.set(i, value);

 if (TAS(flag)) {

 return value;

 }

 else {

 return proposed.get((i + 1) % 2);

 }

}

47

Implementing two thread consensus - Solution

spcl.inf.ethz.ch

@spcl_eth

▪ Assume there exist some correct wait-free consensus protocol with TAS for n > 2 threads.

▪ Proof that it does not work for 3 threads (which implies that it does not work for n > 3 threads)

▪ Go over all cases just like in the proof for atomic read/write registers

▪ Difference to proof for atomic read/write registers

▪ Each node can have 3 children

▪ Multivalent would be a better word for states that did not decide yet

48

TAS consensus number: proof outline that n < 3

spcl.inf.ethz.ch

@spcl_eth

Proof: CAS has consensus number ∞

49

Consensus: CAS consensus number

spcl.inf.ethz.ch

@spcl_eth

50

Proof by construction: CAS consensus number ∞

spcl.inf.ethz.ch

@spcl_eth

▪ Know about properties: consistent, valid, wait-free

▪ Bivalent, univalent, critical state

▪ Argue about properties: why acyclic graph?

▪ Know consensus numbers

▪ Argue with consensus numbers

51

Consensus: What should you definitely know for the exam

spcl.inf.ethz.ch

@spcl_eth

52

MPI (Message Passing Interface)

spcl.inf.ethz.ch

@spcl_eth

▪ Locking is too slow

▪ Shared memory is not always viable

▪ What if we have multiple compute nodes and want to distribute work?

53

MPI: Motivation

spcl.inf.ethz.ch

@spcl_eth

▪ Connect many different computers (cluster) and let them communicate with each other over high speed
interconnects (e.g. Infiniband)

▪ Example: Dragonfly-Topology

54

High Performance Computing: Supercomputers

spcl.inf.ethz.ch

@spcl_eth

55

Infiniband demo

spcl.inf.ethz.ch

@spcl_eth

▪ Message Passing Interface defines the semantics

▪ There are many different MPI implementations: e.g. OpenMPI, MPICH

→ When you build a program using MPI, you can decide which implementation to use

→ Different implementations can lead to different performance, but the semantic is the same as defined by
the MPI standard

→ One is also free to choose the number of MPI-ranks & processes

56

MPI

spcl.inf.ethz.ch

@spcl_eth

57

MPI

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm

spcl.inf.ethz.ch

@spcl_eth

58

MPI

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm

spcl.inf.ethz.ch

@spcl_eth

59

MPI barrier

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm

spcl.inf.ethz.ch

@spcl_eth

60

Collective Computation paradigms

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm

spcl.inf.ethz.ch

@spcl_eth

61

Collective Computation paradigms

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm

spcl.inf.ethz.ch

@spcl_eth

62

Exam tasks

spcl.inf.ethz.ch

@spcl_eth

63

spcl.inf.ethz.ch

@spcl_eth

64

Not valid correct

spcl.inf.ethz.ch

@spcl_eth

65

spcl.inf.ethz.ch

@spcl_eth

66

Not wait free Not consistent

spcl.inf.ethz.ch

@spcl_eth

67

spcl.inf.ethz.ch

@spcl_eth

68

No, as using locks can lead to threads blocking each other
→ Not wait-free

spcl.inf.ethz.ch

@spcl_eth

69

one

spcl.inf.ethz.ch

@spcl_eth

70

one

Yes

spcl.inf.ethz.ch

@spcl_eth

71

spcl.inf.ethz.ch

@spcl_eth

72

1

2

∞

spcl.inf.ethz.ch

@spcl_eth

73

spcl.inf.ethz.ch

@spcl_eth

74

Point-to-Point: One sender to one receiver
Collective operations: see previous slide about „collective computation paradigms“

We mainly use collective operations to get scalable performance

spcl.inf.ethz.ch

@spcl_eth

75

spcl.inf.ethz.ch

@spcl_eth

76

Gather and Broadcast

spcl.inf.ethz.ch

@spcl_eth

77

We have point-to-
point communication

spcl.inf.ethz.ch

@spcl_eth

78

spcl.inf.ethz.ch

@spcl_eth

▪ Revise topics to get an overview over everything

▪ Practice some „easy points“ tasks until you are comfortable with them (always the same pattern)

▪ Amdahl, Gustafson, Pipelining, Histories, State Diagrams, Fork-Join, etc.

▪ Practice harder tasks (some „creativity“ needed)

▪ Wait / notify, questions about properties of locks, barriers, code snippets, etc.

▪ Practice „Mixer“ tasks

▪ Very unpredictable

▪ Revise theory; try to understand and make connections between different concepts

▪ Practice some old exams without a timer first

▪ Identify tasks where you struggle→ specifically practice those tasks and skip easy tasks

▪ Try to solve under time contraints when you feel comfortable with the tasks and theory

▪ Try to conclude how much time to invest for each task based on the assigned points

79

Advice / Outline for exam preparation

spcl.inf.ethz.ch

@spcl_eth

▪ https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm

▪ PVW script

▪ Summaries on ComSol (https://exams.vis.ethz.ch/)

▪ The Art of Multithreading book

80

Good theory overview

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://exams.vis.ethz.ch/

spcl.inf.ethz.ch

@spcl_eth

81

Viel Glück und Erfolg für die Prüfung!!

	Slide 1: Parallel Programming Exercise 14
	Slide 2: Outline
	Slide 3: Post-Discussion Assignment 13
	Slide 4: Sequential Consistency
	Slide 5: Sequential Consistency
	Slide 6: Linearizability
	Slide 7: Linearizability
	Slide 8: Equivalence
	Slide 9: Incomplete Histories
	Slide 10: Sequential Consistency vs Linearizability
	Slide 11: Pre-Discussion Assignment 14
	Slide 12: Consensus
	Slide 13: Theory
	Slide 14: Recap: Consensus Protocols
	Slide 15: Consistent Result
	Slide 16: Valid Result
	Slide 17: Wait-Free
	Slide 18: Consensus: Motivation
	Slide 19: Consensus: Motivation
	Slide 20: Consensus: Motivation
	Slide 21: Consensus Number
	Slide 22: Atomic read/write registers: Consensus Number 1
	Slide 23: Proof simplification
	Slide 24: Simplification: Binary Consensus
	Slide 25: State Diagrams of Two-thread Consensus Protocols
	Slide 26: Anatomy of a State (in two-thread consensus)
	Slide 27: Anatomy of a State
	Slide 28: Critical States
	Slide 29: Quiz: Label the States
	Slide 30: Critical State Existence Proof
	Slide 31: Impossibility Proof Setup – Critical State
	Slide 32: Impossibility Proof Setup – Possible actions of a thread
	Slide 33: Impossibility Proof Setup – Possible actions of a thread
	Slide 34: Many Cases to check
	Slide 35: Impossibility Proof Case I: A reads
	Slide 36: What did we just prove?
	Slide 37: Impossibility Proof Case I’: B reads
	Slide 38: What did we just prove?
	Slide 39: Impossibility Proof Case II: A and B write to different registers
	Slide 40: What did we just prove?
	Slide 41: Impossibility Proof Case III: A and B write to the same register
	Slide 42: That’s all
	Slide 43: What did we prove?
	Slide 44: Consensus: TAS consensus number
	Slide 45: Proof outline
	Slide 46: Implementing two thread consensus with TAS
	Slide 47: Implementing two thread consensus - Solution
	Slide 48: TAS consensus number: proof outline that n < 3
	Slide 49: Consensus: CAS consensus number
	Slide 50: Proof by construction: CAS consensus number ∞
	Slide 51: Consensus: What should you definitely know for the exam
	Slide 52: MPI (Message Passing Interface)
	Slide 53: MPI: Motivation
	Slide 54: High Performance Computing: Supercomputers
	Slide 55: Infiniband demo
	Slide 56: MPI
	Slide 57: MPI
	Slide 58: MPI
	Slide 59: MPI barrier
	Slide 60: Collective Computation paradigms
	Slide 61: Collective Computation paradigms
	Slide 62: Exam tasks
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Advice / Outline for exam preparation
	Slide 80: Good theory overview
	Slide 81

