ETHzurich o ¥ emen DINFK

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

Outline

= Post-Discussion: Assignment 13
= Pre-Discussion: Assighment 14
= Theory

= Exam Tasks & Tips

P — o/ = B A e v o ETHZUrich

‘l

““ . hhh -

Post-Discussion Assighment 13

spcl.inf.ethz.ch R
v owen EETHZzUrich

Sequential Consistency

For each of the following histories, indicate if they are registers: rand s
sequentially consistent or not qgueue: q
A: ——|r.write(l) |- ——— A: g.eng()5)
B: —————- |r.read() :0|————————————————————— B: g.enq(3)
C: ———m———— |r.read() :1|-—————~ A: void
B: void
A: g.deqg()
B: g.deqg()
A: -——|s.write(l) |- ————— A: 3
B: ————— |r.read():0|-——"""""""""""""""—- B: 3
C: === |r.read() :1|-—==—=
A: -——|s.write(l) |- —

B: ————- |r.read() :1|-—|r.read():0|————

spcl.inf.ethz.ch R
v owen EETHZzUrich

Sequential Consistency

For each of the following histories, indicate if they are registers: rand s
sequentially consistent or not qgueue: q

A ——|r.write(l) |- ——— A: g.eng()5)
B: —————- |r.read() :0|————————————————————— B: g.enq(3)
C: ———m———— |r.read() :1|-—————~ A: void
B: void
A: g.deqg()
B: g.deqg()
A: -——|s.write(l) |- ————— A: 3
B: ————— |r.read():0|-——"""""""""""""""—- B: 3
C: === |r.read() :1|-—==—=

A: -—|s.write(l) |-—"""""""""""""""""""—-
B: ————- |r.read() :1|-—|r.read():0|————

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

Linearizability

Infer the object type from the supported operations,
registers are initially zero, stacks/queues initially empty.

s.push (1)
: void
s.push (2)
: void

s .pop ()
s.pop ()

1

2

o vv B = v B vv B v v i i

N

-——|s.write(l) |-——"""""""""""""""""—-
B: - |r.read() :1|-—|r.read () :0|————-

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

Linearizability

Infer the object type from the supported operations,
registers are initially zero, stacks/queues initially empty.

s.push (1)
: void

: s.push(2)
: void ‘///
: s.pop()

s.pop ()
1
: 2

o vv B = v B vv B v v i i

N

: -——|s.write(l) |-——"""""""""""""""""—-
B: - |r.read() :1|-—|r.read () :0|————-

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

Equivalence

For all threads T: H|T=G|T

A: r.read() B: r.read()
A: O B: 1

C: r.write (1) : . C: r.write (1)
c: void is equivalent to C: void

B: r.read() A: r.read()
B: 1 A: O

spcl.inf.ethz.ch R
v owen EETHZzUrich

Incomplete Histories

When histories are obtained from a program trace, the history might be incomplete.
This can be dealt with in two ways.

Why do we need both ways? Give an example where discarding all pending invocations will lead to
a non-linearizable history, but adding a response will lead to a linearizable history.

not linearizable
B: write (0)

remove pending B vo?d -
invocations B: read ()
B: write (0) B: 1
B: void
A: write(l) <--pending
B: read() linearizable
B 1 B: write (0)
B: void
add response A: write (1)
at the end of B: read/()
the history B: 1
A: void

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

Sequential Consistency vs Linearizability

A: write (1)

A: void
B: read()
B: O

SC but not linearizable

- Bk T :'(: o B R spcl.inf.ethz.c L
MASIPCL = v onion ETHZzUrich

ST

—

spcl.inf.ethz.ch R
v owen EETHZzUrich

Consensus

= Code snippets: argue about consistency (result same for each thread), validity (result was proposed by a
thread) and wait-freedom

= Implement consensus protocol with wait-free FIFO queue
= Equivalence between consensus and binary consensus for two threads

P — o/ = B A e v o ETHZUrich

o 1

.“l . hhhbh

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

Recap: Consensus Protocols

| propose | propose
”23”' ”42”'

1 A few moments later...

T (a finite number of steps) -

We EEE Which other
agreed = = scenarios are
on“23”. - allowed?

We
agreed
on “23”

14

v oni . ETHZzUrich
Consistent Result

| propose | propose
”23”' ”42”'

!

TIOL iva Consensus result needs to be

This is illegal!

We EEE consistent: the same on all threads.
agreed = =
IRRNND
on“23”.
We
agreed
on “42”

15

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

Valid Result

| propose | propose
”23”' 1142;)'

!

pemEE R Consensus result needs to be valid:

This is illegal!

We EEE proposed by some thread.
agreed = =
on“420”. g
We
agreed
on “420”

16

spcl.inf.ethz.ch

Wait-Free

| propose
1123”'

| cannot finish
because | am
waiting for

the other
thread.

| propose
”42”'

4

| will not
schedule you
now!

Y @spcl_eth

This is illegal!

Consensus needs to be wait-free:

All threads finish after a finite
number of steps, independent of
other threads.

ETHzurich

. [ETHzUrich

Consensus: Motivation

Example: Databases (of social networks)

v oni . ETHZzUrich
Consensus: Motivation

Example: Databases (of social networks)

v oni . ETHZzUrich
Consensus: Motivation

Example: Databases (of social networks)

spcl.inf.ethz.ch R
v owen EETHZzUrich

Consensus Number

»1he consensus number of a concurrent object is defined to be the maximum
number of processes in the system which can reach consensus by the given
object in a wait-free implementation. “

atomic read/write registers, mutex: 1
TAS, wait-free queue & stack: 2
CAS: oo

Note: wait-free queue & stack cannot be implemented with atomic read/write
registers

W £ = B R P P AL v o ETHziirich

Proof: There is no wait-free implementation of n-thread consensus (n > 1) with atomic read/write registers.

spcl.inf.ethz.ch R
v owen EETHZzUrich

Proof simplification

Proof that is does not work for 2 threads to show that it does not work for n threads.

Why can we make this assumption?
Assume our consensus protocol is correct (consistent, valid, wait-free).

Assume n - 2 threads die / get descheduled.
Since our consensus is wait-free, it should still work for the two remaining threads.

spcl.inf.ethz.ch R
v owen EETHZzUrich

Simplification: Binary Consensus

= Instead of proposing an integer, every thread now proposes either 0 or 1

= Equivalent to “normal” consensus for two threads
= How can we proof this?

binary_decide(bit b) { int_decide(int d) {
return int_decide(b) proplid] = d
} other = (id + 1)%2;
int win = bin_decide(id);
We can implement binary return prop[win];
consensus using normal }
consensus.

We can implement binary
consensus using normal consensus
(idin {0,1} and unique).

spcl.inf.ethz.ch R
v owen EETHZzUrich

State Diagrams of Two-thread Consensus Protocols

Cycles among states cannot existin a
wait-free algorithm: The state “looks”
the same each time we visit, so we
are trapped forever in the loop and
not wait-free.

Start state, both threads (A and B)
have not yet executed the first
instruction of the consensus
protocol.

Each state has at most two successors:
Either A or B execute an instruction.

spcl.inf.ethz.ch R
w owcen ETHZUriCh

Anatomy of a State (in two-thread consensus)

Shared Variables

Thread local

variables of A Thread local

variables of B

Program
- counter of B
Program

counter of A

spcl.inf.ethz.ch R
w owcen ETHZUriCh

Anatomy of a State

The states are different, since A has
Shared Variables different local variables and program
rl=3 counter values.

Thread loca

variables of A Thread loca
variables of B

y=0 Program

counter of B

Program
© S1

counter of A

Shared Variables
ri=3

Thread loca

variables of A Thread loca
variables of B

Yet from B’s perspective they look the y=0
same! (Until A writes x into a shared
variable!) Program

Program
counter of B
S1

counter of A

spcl.inf.ethz.ch R
v owen EETHZzUrich

Critical States

There is always at least one bivalent
state (the start state).

This state is bivalent but all
his successors are :
@ @ We call such states critical.
Frm this state we only reach

states with output 1, so it is
also univalent. o
Output states are always
univalent.

spcl.inf.ethz.ch R
v owen EETHZzUrich

Quiz: Label the States

It is also critical, since it is
bivalent and all its successors
are univalent.

This state is bivalent, as we
can reach 0 and 1 output
states.

bivalent!

Output states are al\ Qutput statesa Output states are always
univalent. univaler univalent.

spcl.inf.ethz.ch R
v owen EETHZzUrich

Critical State Existence Proof

Lemma: Every consensus protocol has a
critical state.

Proof: From (bivalent) start state, let the treads only
move to other bivalent states.

e If it runs forever the protocol is not wait free.

* If it reaches a position where no moves are possible
this state is critical.

spcl.inf.ethz.ch R
v owen EETHZzUrich

Impossibility Proof Setup — Critical State

Assume we are in the critical

state (which must exist). @ So what actions can a thread
Assume that if A moves next perform in his “move”?
we end up with O, if B moves

next we end up with 1. Either read or write a shared

(w.l.0.g., can switch names) register! — Let’s see why.

spcl.inf.ethz.ch R
v owen EETHZzUrich

Impossibility Proof Setup — Possible actions of a thread

critical

So what actions can a thread

A: x=y+2 perform in his “move”?

(x,y,z: local)

What happens if A just reads
from and writes to local vars?

CGEEEED GEEED GEEED GEEED GEEED GEEEED $GEEEED 202G -___ﬂ

Now the From B’s perspective I
scheduler | these two states look
pauses A, and I exactly the same! |
B runs solo B cannot know that o .
one of them must I C:tnclus.l?n.lFlrst mstruc';lon
| output 0! I after CrItIC? state must be a
read or write of a shared
I | I variable!
- - - = = = - T T T T~ S
I - - \\
—

Output must Output must
be 0 be 1

spcl.inf.ethz.ch R
v owen EETHZzUrich

Impossibility Proof Setup — Possible actions of a thread

We know reading/writing B can read the
local variables cannot lead @ same variable Many cases...
out of a crltlcal. state — what let’s make tables
remains? B can read a

different variable
A can read a
shared variable B can write the

same variable
A can write a
shared variable

B can write a
different variable

spcl.inf.ethz.ch

Many Cases to check

First Action n
A:rl.read() | A: rl.write() | A: rl.write() | A: r2.write()
B: rl.read()
Second | p. r2.read()
Action
B: rl.write()
B: r2.write() o
Second Action
A:rl.read() | A:r2.read() | A: rl.write() | A: r2.write()
B: rl.read()
First B: r2.rea
Action 1
B: rl.write()
B: r2.write() @

ETHzurich

Y @spcl_eth

Is binary
consensus
possible for any
of those?

Can we simplify
somehow?

Let’s say A always moves first,
otherwise, switch names.

Similarly, we can call the
register A reads rl in both
cases.

spcl.inf.ethz.ch R
v owen EETHZzUrich

Impossibility Proof Case I: A reads

Output is decided (0) Areads B does X Output is decided (1)
due to critical state. due to critical state.

-

From B’s perspective
these two states look
exactly the same!
However B needs to
output different
values!

spcl.inf.ethz.ch

What did we just prove?

First Action

Second
Action

:rl.read()

: r2.read()

: rl.write()

o (0 |0 | W

: r2.write()

A:rl.read() | A: rl.write()

.

Y @spcl_eth

Is binary
consensus
possible for any
of those?

ETHzurich

spcl.inf.ethz.ch R
v owen EETHZzUrich

Impossibility Proof Case I’: B reads

Output is decided (0) B reads Awrites Output is decided (1)
due to critical state. due to critical state.

A writes l

From A’s perspective
these two states look
exactly the same!
However A needs to
(eventually) output
different values!

spcl.inf.ethz.ch

What did we just prove?

First Action

Second
Action

:rl.read()

: r2.read()

: rl.write()

o (0 |0 | W

: r2.write()

A:rl.read() | A: rl.write()

Y @spcl_eth

Is binary
consensus
possible for any
of those?

ETHzurich

spcl.inf.ethz.ch R
v owen EETHZzUrich

Impossibility Proof Case Il: A and B write to different registers

Output is decided (0) A writes rl B writes r2 Output is decided (1)

due to critical state. —mime e TN due to critical state.

‘B writes r2 : i == xd
. A writes rl " output1

.
-

Output O |

Exactly the same state!

However it should be outputting 0
/ 1 depending on where it was
reached from!

spcl.inf.ethz.ch

What did we just prove?

First Action

Second
Action

:rl.read()

: r2.read()

: rl.write()

o (0 |0 | W

: r2.write()

A:rl.read() | A: rl.write()

Y @spcl_eth

Is binary
consensus
possible for any
of those?

ETHzurich

spcl.inf.ethz.ch R
v owen EETHZzUrich

Impossibility Proof Case lll: A and B write to the same register

Output is decided (0) Awrites r B writes r Output is decided (1)
due to critical state. due to critical state.

B writes r l

From B’s perspective
these two states look
exactly the same!
However B needs to
output different
values!

spcl.inf.ethz.ch R
v owen EETHZzUrich

That’s all

First Action

B: rl.read()

Second

B: r2.read()

Action

B: rl.write()

B: r2.write()

A:rl.read() | A:rl.write()

1985, 2.5k citations

Is binary
consensus
possible for any
of those?

No

Impossibility of Distributed Consensus with One Faulty
Process

MICHAEL J. FISCHER

Yale University, New Haven, Connecticut

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachuseits
AND

MICHAEL S. PATERSON
University of Warwick, Coventry, England

Abstract. The consensus problem involves an asynchronous system of processes, some of which may he

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

What did we prove?

= Atomic read/write registers have consensus number 1

43

W £ = B R P P AL v o ETHziirich

Consensus: TAS consensus number

Proof: TAS has consensus humber 2

spcl.inf.ethz.ch R
v owen EETHZzUrich

Proof outline

= First proof that TAS has consensus number n >= 2 by construction
= Then proof that TAS has consensus number n < 3 by contradiction

=» n needs to be 2

spcl.inf.ethz.ch R
v owen EETHZzUrich

Implementing two thread consensus with TAS

= Assume you have a machine with atomic registers and an atomic test-and-set operation with the
following semantics (mem(s] is initially 0):
boolean TAS(memref s) {
if (mem[s] ==0) {
mem(s] = 1;
return true;

}

return false;

}

= Implement a wait-free two-process consensus protocol using TAS and atomic registers.

spcl.inf.ethz.ch R
v owen EETHZzUrich

Implementing two thread consensus - Solution

= Pseudo-Code for both threads
AtomiclntegerArray proposed = new AtomiclntegerArray(2);
flag = 0;

int decide (int value) {
int i = ThreadID.get();
proposed.set(i, value);
if (TAS(flag)) {
return value;
}
else {
return proposed.get((i + 1) % 2);

spcl.inf.ethz.ch R
v owen EETHZzUrich

TAS consensus number: proof outline thatn< 3

= Assume there exist some correct wait-free consensus protocol with TAS for n > 2 threads.
= Proof that it does not work for 3 threads (which implies that it does not work for n > 3 threads)

= Go over all cases just like in the proof for atomic read/write registers

= Difference to proof for atomic read/write registers
= Each node can have 3 children

= Multivalent would be a better word for states that did not decide yet

W £ = B R P P AL v o ETHziirich

Consensus: CAS consensus nhumber

Proof: CAS has consensus number oo

spcl.inf.ethz.ch R
v owen EETHZzUrich

Proof by construction: CAS consensus number oo

class CASConsensus {
private final int FIRST = -1;
private AtomicInteger r = new AtomicInteger(FIRST); // supports CAS
private AtomicIntegerArray proposed; // suffices to be atomic register

.. // constructor (allocate array proposed etc.)

public Object decide (Object value) {
int 1 = ThreadID.get();
proposed.set(i, value);
if (r.compareAndSet(FIRST, i)) // I won
return proposed.get(i); // = value
else
return proposed.get(r.get());

spcl.inf.ethz.ch R
v owen EETHZzUrich

Consensus: What should you definitely know for the exam

= Know about properties: consistent, valid, wait-free
= Bivalent, univalent, critical state

= Argue about properties: why acyclic graph?

= Know consensus numbers

= Argue with consensus numbers

P — o/ = B A e v o ETHZUrich

‘l

““ . hhh -

MPI (Message Passing Interface)

spcl.inf.ethz.ch R
v owen EETHZzUrich

MPI: Motivation

= Locking is too slow
= Shared memory is not always viable
= What if we have multiple compute nodes and want to distribute work?

High Performance Computing: Supercomputers

spcl.inf.ethz.ch

Y @spcl_eth

ETHzurich

Connect many different computers (cluster) and let them communicate with each other over high speed

interconnects (e.g. Infiniband)
Example: Dragonfly-Topology

o [|

global link
local link
router
node

group

spcl.inf.ethz.ch R
w owcen ETHZUriCh

Infiniband demo

[elidsbrinzl ~]%$ ib_read_bw

kkkkkkkkkkhkkkkkkkhkkkkkkhkhkkkkkkhkhkkk

* Waiting for client to connect... =*
kkhkkkkkkkkkhkrkkhkkhkhkhkhkhhkkkhkhkhkhkhkhikkkkk

RDMA_Read BW Test
Dual-port : OFF Device
Number of qps 1 Transport
Connection type : RC Using SRQ
PCIe relax order: ON Lock-free
ibv_wr* API : ON Using DDP
CQ Moderation 1
Mtu : 4096[B]
Link type : IB
Outstand reads : 16
rdma_cm QPs . OFF
Data ex. method : Ethernet

local address: LID @x@3 QPN @x18bac PSN @xdfad59 OUT 0x10 RKey 0xb83a0@ VAddr 0x00400000529000
remote address: LID 0x@3 QPN @x18bab PSN 0x6c@903 OUT 0x10 RKey 0xb69600 VAddr 0x00400000529000

#bytes #iiterations BW peak[MiB/sec] BW average[MiB/sec] MsgRate[Mpps]
65536 1000 39185.09 39155.05 0.626481

spcl.inf.ethz.ch R
v owen EETHZzUrich

MPI

= Message Passing Interface defines the semantics
= There are many different MPI implementations: e.g. OpenMPI, MPICH

- When you build a program using MPI, you can decide which implementation to use

— Different implementations can lead to different performance, but the semantic is the same as defined by
the MPI standard

— Oneiis also free to choose the number of MPIl-ranks & processes

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

MPI

MPI.Init(args);
int rank = MPI.COMM_WORLD.Rank();
int size = MPI.COMM_WORLD.Size();

// CODE...

MPI.Finalize():

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm -

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

MPI

comm. send (
Object buf, // the data object to be sent
int offset, // start offset from the data start item
int count, // number of items to be sent
Datatype datatype, // data type of items
int dest, // destination process id
int tag // data id tag
)
comm. recv(
Qbject buf, // the object to write the data to
int offset, //
int count, // number of items to be receiv
Datatype datatype, // data type of items
int src, // souce process id or MPI_ANY_SOURCE
int tag // data id tag MPI_ANY_TAG

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm .

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

MPI barrier

public void mybarrier() {
int rank = MPI.COMM_WORLD.Rank();
int size = MPI.COMM_WORLD.Size();
boolean[] buf = new boolean[1];

if (rank == @) {
// Wait until every process sent a meaningless boolean
for (int 1 = 1; i < size; i++) {
MPI.COMM_WORLD.Recv(buf, @, 1, MPI.BOOLEAN, i, @);

// All processes are ready

// Send a signal to all processes so that they can continue
for (int i = 1; i < size; i++) {
MPI.COMM_WORLD.Send(buf, @, 1, MPI.BOOLEAN, i, 0);
}
} else {
MPI.COMM_WORLD.Send(buf, @, 1, MPI.BOOLEAN, @, @); // send meaningless boolean
MPI.COMM_WORLD.Recv(buf, @, 1, MPI.BOOLEAN, @, @); // wait until process @ gives signal

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm -

spcl.inf.ethz.ch R
v owen EETHZzUrich

Collective Computation paradigms

Reduction

Reduce AllReduce

P1 E Reduce - p1 E Allreduce
B Em D

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm

spcl.inf.ethz.ch R
v owen EETHZzUrich

Collective Computation paradigms

Distribution

Broadcast Scatter/Gather

7o o INNER & Scotter

o D Bt L EEEE

A Gather ¢

rs [N EREN

AllGather Scan

PO ABCD kG
Pr

» DN Mete | FNINER B scan

P3 _ ABCD & E A+B+C+D

AllToAll

& Aloall

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm

P — o/ = B e e A v o ETHZUrich

o 1

.“l . hhhbh

Exam tasks

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

Consensus

11. Welche der folgenden Methoden sind korrek- Which of the following Java Methods are
te Implementierungen von Wait-free Consensus valid implementations of wait-free consen-

fiir die angegebene Zahl N an Threads? Be- sus for the given number N of threads?
griinden Sie Thre Antworten. Justify your answers.
(a) N=1 (2) (b) N=1 (2)
1 int consensus(int x) { 1 int consensus(int x) {
2 return 0O; 2 return x;

3 } 3 }

63

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

Consensus

11. Welche der folgenden Methoden sind korrek- Which of the following Java Methods are
te Implementierungen von Wait-free Consensus valid implementations of wait-free consen-

fiir die angegebene Zahl N an Threads? Be- sus for the given number N of threads?
griinden Sie Thre Antworten. Justify your answers.
(a) N=1 (2) (b) N=1 (2)
1 int consensus(int x) { 1 int consensus(int x) {
2 return 0O; 2 return x;
3 } 3 }
Not valid correct

64

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

(c) N=2 (2) (d) N=2 (2)
1 volatile int decision; 1 AtomicInteger dec = O;
2 volatile bool decided = false; 2 int[] prop = new int[] {0,0};
3 3
1 synchronized int consensus(int x) { 4
5 if ('decided) 5 int consensus(int x) {
6 decision = x; 6 prop[dec.Get()] = x;
7 decided = true; 7 t = dec.IncrementAndGet();
8 return decision; 8 return propl[t-1];

o } 9 }

65

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

(c) N=2 (2) (d) N=2 (2)
1 volatile int decision; 1 AtomicInteger dec = O;
2 volatile bool decided = false; 2 int[] prop = new int[] {0,0};
3 3
1 synchronized int consensus(int x) { 4
5 if ('decided) 5 int consensus(int x) {
6 decision = x; 6 prop[dec.Get()] = x;
7 decided = true; 7 t = dec.IncrementAndGet();
8 return decision; 8 return propl[t-1];
o } o }

Not wait free Not consistent

66

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

Can binary wait-free consensus for two
threads be implemented with locks? Ex-
plain your answer.

67

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

Can binary wait-free consensus for two
threads be implemented with locks? Ex-
plain your answer.

No, as using locks can lead to threads blocking each other
- Not wait-free

68

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

one
Can binary wait-free consensus for two

threads be implemented with locks? Ex-
plain your answer.

69

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

one
Can binary wait-free consensus for two

threads be implemented with locks? Ex-
plain your answer.

Yes

70

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

What are the consensus numbers of the
following three objects:

a) atomic registers that support only the
operations Read() and Write(),

b) atomic registers that also support the
TestAndSet() operation, and

c) atomic registers that also support the
CompareAndSet() operation?

71

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

What are the consensus numbers of the
following three objects:

a) atomic registers that support only the
operations Read() and Write(),

b) atomic registers that also support the)
TestAndSet() operation, and

c) atomic registers that also support the
CompareAndSet() operation?

72

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

What is the difference between MPI
point-to-point and collective operations?
Why are collective operations used?

73

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

What is the difference between MPI
point-to-point and collective operations?
Why are collective operations used?

Point-to-Point: One sender to one receiver
Collective operations: see previous slide about ,,collective computation paradigms”

We mainly use collective operations to get scalable performance

74

spcl.inf.ethz.ch R
v owen EETHZzUrich

Which two collective operations can be Dlatrbution
. . Broadcast Scatter/Gather
combined to imlement the Allgather op- " Po Scatter
tion? N Broadcast P ERRN
eration ! 2 [N » L Gather
s [Il - [DEa
AllGather Scan
Reduction
PO P
Reduce AllReduce P1 _ Allgather P1 E Scan A+B
» B Reduce — B Alreduce N o 0|
i - P2 AllToAll
© o . - E o
[5o 61 652 B3 Alltoall
2
LEBN 00 D1 D2 D3

75

Which two collective operations can be
combined to imlement the Allgather op-
eration?

Reduction

Reduce AllReduce

P1 E Reduce - P1 E Allreduce
EN D | [] <IN D!

Distribution

Broadcast

PO
r1 [
r2 [
rs [
AllGather

PO
1 [ENEEE
P2
r3 [N
AllToAll

PO
PL
P2
2

Broadcast

ABCD
Allgather

— s ABCD

ABCD
ABCD

AO BO Do)
Alltoall Al B1 C1 D1
. AROAR |

A2 B2 C2 D2

& o B BN S
g

3 B3 C3 D3

Gather and Broadcast

spcl.inf.ethz.ch
Y @spcl_eth

Scatter/Gather

PO
P1
P2
P3

Scatter

Gather

Scan

ETHzurich

76

Ein MPI Programm wird von 8 Prozessen
ausgefiihrt. Jeder Prozess kann zu jeder Zeit
maximal an einem Nachrichtenaustausch
teilnehmen. Eine Nachricht welche einen
double Wert enthélt kann innerhalb 1 ms
zwischen zwei beliebigen Prozessen ausge-
tauscht werden. In den unten gezeichneten
Schemata (A, B und C) wird jeder Nachrich-
tenaustausch als gerichtete Kante zwischen
Sender und Empfinger dargestellt.

Das Ziel des MPI Programms ist es,
einen double Wert von Prozess 0 zu jedem
anderen Prozess zu senden. Beantworten
Sie fir jedes der Schemata unten folgende
Fragen: Wird das Ziel erreicht? Was ist die
minimale Zeitdauer, bis der letzte Prozess
seine Aufgabe erfiillt hat.

An MPI program is executed by 8

spcl.inf.ethz.ch
Y @spcl_eth

processes. Tach—process—canm—only—par— We have point-to-

tretpatetnronecommmunicatiomrat—a—tine

(either as a sender or a receiver). A
message containing a double can be
sent between any two processes in 1
ms. In the communication schemes
below (A, B, and C) each directed edge
represents a message sent from a sender
to a receiver process.

The goal is to send a double from
process 0 to all other processes. For
each of the schemes below, answer the
following: Do they achieve the goal?
What is the minimum time for the last
process to finish its task?

point communication

ETHzurich

77

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

Benjamin Scherling Catalan @bscherling - 10 months ago - edited 10 months ago v T A

A: Yes, message passes through all processes. Minimum time =3ms
B: Yes, all processes recieve message directly from 0. Minimum time = 7ms

C: No, since we start in process 0 we see that process 7 has no in-going edge and therefore can't recieve any message

78

spcl.inf.ethz.ch R
v owen EETHZzUrich

Advice / Outline for exam preparation

= Revise topics to get an overview over everything

= Practice some ,easy points” tasks until you are comfortable with them (always the same pattern)
= Amdahl, Gustafson, Pipelining, Histories, State Diagrams, Fork-Join, etc.

= Practice harder tasks (some ,creativity” needed)
= Wait / notify, questions about properties of locks, barriers, code snippets, etc.

= Practice ,Mixer” tasks
= Very unpredictable
= Revise theory; try to understand and make connections between different concepts

= Practice some old exams without a timer first

= |dentify tasks where you struggle - specifically practice those tasks and skip easy tasks
= Try to solve under time contraints when you feel comfortable with the tasks and theory
= Try to conclude how much time to invest for each task based on the assigned points

spcl.inf.ethz.ch SRR
v owen EETHZzUrich

Good theory overview

= https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
= PVW script

= Summaries on ComSol (https://exams.vis.ethz.ch/)

= The Art of Multithreading book

80

https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://luck-wildflower-a5b.notion.site/pprog-summary-leon-thomm
https://exams.vis.ethz.ch/

spcl.inf.ethz.ch SRR
w osien IENHZUrICH

Viel Glick und Erfolg fur die Priafung!!

81

	Slide 1: Parallel Programming Exercise 14
	Slide 2: Outline
	Slide 3: Post-Discussion Assignment 13
	Slide 4: Sequential Consistency
	Slide 5: Sequential Consistency
	Slide 6: Linearizability
	Slide 7: Linearizability
	Slide 8: Equivalence
	Slide 9: Incomplete Histories
	Slide 10: Sequential Consistency vs Linearizability
	Slide 11: Pre-Discussion Assignment 14
	Slide 12: Consensus
	Slide 13: Theory
	Slide 14: Recap: Consensus Protocols
	Slide 15: Consistent Result
	Slide 16: Valid Result
	Slide 17: Wait-Free
	Slide 18: Consensus: Motivation
	Slide 19: Consensus: Motivation
	Slide 20: Consensus: Motivation
	Slide 21: Consensus Number
	Slide 22: Atomic read/write registers: Consensus Number 1
	Slide 23: Proof simplification
	Slide 24: Simplification: Binary Consensus
	Slide 25: State Diagrams of Two-thread Consensus Protocols
	Slide 26: Anatomy of a State (in two-thread consensus)
	Slide 27: Anatomy of a State
	Slide 28: Critical States
	Slide 29: Quiz: Label the States
	Slide 30: Critical State Existence Proof
	Slide 31: Impossibility Proof Setup – Critical State
	Slide 32: Impossibility Proof Setup – Possible actions of a thread
	Slide 33: Impossibility Proof Setup – Possible actions of a thread
	Slide 34: Many Cases to check
	Slide 35: Impossibility Proof Case I: A reads
	Slide 36: What did we just prove?
	Slide 37: Impossibility Proof Case I’: B reads
	Slide 38: What did we just prove?
	Slide 39: Impossibility Proof Case II: A and B write to different registers
	Slide 40: What did we just prove?
	Slide 41: Impossibility Proof Case III: A and B write to the same register
	Slide 42: That’s all
	Slide 43: What did we prove?
	Slide 44: Consensus: TAS consensus number
	Slide 45: Proof outline
	Slide 46: Implementing two thread consensus with TAS
	Slide 47: Implementing two thread consensus - Solution
	Slide 48: TAS consensus number: proof outline that n < 3
	Slide 49: Consensus: CAS consensus number
	Slide 50: Proof by construction: CAS consensus number ∞
	Slide 51: Consensus: What should you definitely know for the exam
	Slide 52: MPI (Message Passing Interface)
	Slide 53: MPI: Motivation
	Slide 54: High Performance Computing: Supercomputers
	Slide 55: Infiniband demo
	Slide 56: MPI
	Slide 57: MPI
	Slide 58: MPI
	Slide 59: MPI barrier
	Slide 60: Collective Computation paradigms
	Slide 61: Collective Computation paradigms
	Slide 62: Exam tasks
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79: Advice / Outline for exam preparation
	Slide 80: Good theory overview
	Slide 81

