
Parallel Programming
Exercise Session 13

1

Outline

2

• Post-Discussion Assignment 12
• Pre-Discussion Assignment 13
• Exam Questions & Theory Recap
• Kahoot (credits: @Bauboo)

Feedback: Assignment 12

3

Assignment 12

• Multisensor System.

4

Multisensor System

5

LockedSensors

6

Lock implementation

7

LockFreeSensors

8

Is the previous implementation wait free?

9

Yes

Given that the threads update (or try to update) the entry in a given time
interval only finitely often, the method call is bounded and cannot
continuously retry. This is the case since the time stamp of the entry is
strictly increasing. If our time stamp is older, we return. If our time stamp is
newer, there are only finitely many other threads with updates which have
a time stamp in between the current time stamp and our time stamp. That is
why our method call will always finish in a bounded number of steps.
Hence, it is wait-free.

Pre-Discussion: Assignment 13

10

Histories and their properties:
Sequential Consistency
Linearizability
Equivalence
Completeness
etc.

Recap Histories

Histories can be categorized by some fundamental properties:

Sequential: 1st action invocation; no interleavings

Complete: no pending invocations

Equivalence to some other History: for all threads A: H|A = G|A

Legal: for all objects r: H|r is sequential and correct

Well formed: for all threads A: H|A is sequential

Quiescent Consistent: correct with reordering of “overlapping” calls

Sequentially Consistent: correct with reordering regarding threads

Linearizable: choosing linearization points to make execution correct

12Note: the above definitions are not formal

Quiescent Consistent

(composable)
Sequential Consistent

(not composable)

Linearizable

(composable)

Exam Questions

14

A lock is fair if it fulfills FIFO order.

A lock is fair if it fulfills FIFO order.

When one or more threads are competing for the lock, at least one of those

threads is guaranteed to acquire the lock within a finite amount of time.

A lock is fair if it fulfills FIFO order.

When one or more threads are competing for the lock, at least one of those

threads is guaranteed to acquire the lock within a finite amount of time.

When one or more threads are competing for the lock, every thread is guaranteed

to acquire the lock within a finite amount of time.

Counter example:

Filter Lock

Counter example:

A lock where the lock method never returns.

FIFO not violated but lock is neither starvation-free nor deadlock-free.

Deadlock-free & fair => Starvation-free

24

custom

25

custom

=

26

custom

Gustafson‘s Law

27

custom

Consider a program with 20% of the code that is sequential
and 80% of the code that is parallelized. Assume that the
parallelizable code scales linearly and the sequential runtime
of the program is T1 = 100. What is the speedup S8 when
executed on 8 CPUs?

Consider a program with 20% of the code that is sequential
and 80% of the code that is parallelized. Assume that the
parallelizable code scales linearly and the sequential runtime
of the program is T1 = 100. What is the speedup S8 when
executed on 8 CPUs?

S_8 = 100/30 = 3.333333…

A program has 40% sequential code and 60% parallelized code running on a

machine with 6 cores. To improve parallel performance, you can either:

A) Hire a developer to parallelize 80% of the code (up from 60%).

B) Buy a better machine with 120 cores. According to Amdahl's law, which of

these options leads to better speedup? Briefly explain why.

A program has 40% sequential code and 60% parallelized code running on a

machine with 6 cores. To improve parallel performance, you can either:

A) Hire a developer to parallelize 80% of the code (up from 60%).

B) Buy a better machine with 120 cores. According to Amdahl's law, which of

these options leads to better speedup? Briefly explain why.

Option A:

We get a speedup of 3

Option B:

We get a speedup < 2.5

Choose option A.

Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation

(e.g., process a customer)

Throughput
amount of work that can be done by a system in a given period of time

(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline
a pipeline is balanced if each stage takes the same length of time

32

essentials

Instance vs. Stage

33

Instance

Stage

Latency

34

Generally, you can take the total time of the first instance.

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒(𝑓𝑖𝑟𝑠𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) = 𝑠𝑢𝑚(𝑡𝑖𝑚𝑒(𝑎𝑙𝑙_𝑠𝑡𝑎𝑔𝑒𝑠))

If not constant, you can calculate it for the 𝑛-th instance.

𝑙𝑎𝑡𝑒𝑛𝑐𝑦
= 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒(𝑓𝑖𝑟𝑠𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) + (max 𝑡𝑖𝑚𝑒_𝑠𝑡𝑎𝑔𝑒 − 𝑡𝑖𝑚𝑒 𝑓𝑖𝑟𝑠𝑡_𝑠𝑡𝑎𝑔𝑒) ⋅ (𝑛 − 1)

https://polybox.ethz.ch/index.php/s/KwIm2IqvWYP79UB?path=%2FSkript#pdfviewer

Consider a pipeline with three stages with the following execution times:

Stage 1: 50 sec

Stage 2: 25 sec

Stage 3: 25 sec

a) What is the throughput of this pipeline?

b) What is the speedup of this pipeline compared to sequential

execution?

Consider a pipeline with three stages with the following execution times:

Stage 1: 50 sec

Stage 2: 25 sec

Stage 3: 25 sec

a) What is the throughput of this pipeline?

b) What is the speedup of this pipeline compared to sequential

execution?

Throughput

1 / 50 sec

Speedup

S_pipelined = throughput_pipelined / throughput_sequential
= 2

Duplicate sharpen:

Throughput increased

Constant latency

40ms

40ms

40ms

We need 2 processors

Not SC

Thus also not linearizable

Execution Time: 260

We need 2 processors

Critical Section: p2 and q2

Critical Section: p2 and q2

Critical Section: p2 and q2

Critical Section: p2 and q2

Critical Section: p2 and q2

Critical Section: p2 and q2

Critical Section: p2 and q2

Critical Section: p2 and q2

100*100*2^32

Parallel Patterns

• We are now quite familiar with how to parallize algorithms

• There are a few recurring patterns that are important to know

Map, Reduction, Stencil, Scan, Pack

Reduction

• A reduction is an operation that produces a single answer
from a collection (array etc) via an associative operator.

• Needs to be associative. Otherwise divide-and-conquer won‘t
work

Example: array sum

Map

• Operates on each element of the input data indenpendently
(each array element)

• Output is the same size → no size reduction

• Doesn‘t have to be the same operation on each element

Example: add two arrays

Stencil

• Like map but can take more than one element as input

• Generalization of map and thus also no size reduction

Example:

Image → apply averaging filter on each pixel

Update a value based on its neighbors

Never do it in-place because you would then take values that are
already output values.

Scan

• Collection of data X → return collection of data Y

• Y(i) = functionOf(Y(i - 1) & X(i))

• Seems sequential because of dependencies

• Can parallelize if function is associative → O(log(n)) span

Example: parallel prefix sum

Pack

• Collection of data X → return collection of data X if fulfill
condition

Pack

• First compute bit vector

• Then find index in result array (prefix sum on bit vector)

Reduce, sum = 42

Pack

out = {„Apple“, „Banana“}

Map, vec = {0, 3, 3, 0, 1}

Scan, out = {1, 2, 6, 24, 120}

Kahoot

87

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Gustafson‘s Law
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Pipelining: Main Concepts Recap
	Slide 33: Instance vs. Stage
	Slide 34: Latency
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Parallel Patterns
	Slide 73: Reduction
	Slide 74: Map
	Slide 75: Stencil
	Slide 76: Scan
	Slide 77: Pack
	Slide 78: Pack
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

