Parallel Programming
Exercise Session 13

Outline

* Post-Discussion Assignment 12

* Pre-Discussion Assignment 13

* Exam Questions & Theory Recap
 Kahoot (credits: @Bauboo)

Feedback: Assighnment 12

Assignment 12

« Multisensor System.

sensor data

sensor

monitor
thread

monitor
thread

monitor
thread

sensor

sensor

Multisensor System

fH assignment11
v Q SensorData

assignment11
Elj s Fdata: doublel[]

v (i
S?nsors . af timestamp : long
@ " update(long, doublel]) : void 4 © SensorData(long, double(])
]]
@ " get(doublel]) : long a getvalues() : double[]

A getTimestamp() : long

1 assignment11

v Q LockedSensors t+ assignment11
4 time: long v Q LockFreeSensors
4 data: double[] 4 “ LockFreeSensors()
4 “ LockedSensors() @ . update(long, double[]) : void
@ . update(long, double[]) : void @ .. get(double[]) : long

@ . get(double[]) : long

class LockedSensors implements Sensors {

LockedSensors long tine = 0;

double data[];

private ReadWritelock lock;
private Lock readlock;
private Lock writelock;

LockedSensors() {
this(new ReadWriteMonitorLock());

1
LockedSensors(ReadWritelock 1){
public long get(double val[]) time = @;
{ lock = 1;
readlock.lock(); readlock = lock.readlLock();
try{ writelock = lock.writeLock(); public void update(long timestamp, double[] data)
if (time == @) 1 {
return @; writelock.lock();
else{ try{. .)
for (int i = @; i<data.length; ++i) if (timestamp > time) {
val[i] = data[i]; if (this.data == null)
return time; this.data = new double[data.length];
} time = timestamp;
}finally { for (int i=@; i<data.length;++i)
readlock.unlock(); this.data[i]= data[i];
} }
1
1 finally {

writelock.unlock();

}

private synchronized void aquireRead(){

. . readersWating++;
LOCk Implementatlon while(writers>@ || (writersWating>@ && readersToWait<=0)){
try {
wait();
public class ReadWriteMonitorLock implements ReadWritelock{ } catch (InterruptedException e) { e.printStackTrace(); }
private Lock readerlock = new ReadMonitorLock(this); }
private Lock writerlock = new WriteMonitorLock(this); readersWating--;
readersToWait--;
//Invariant @<=readers /\ O<=writers<=1 /\ readers*writers=0 readers++;
private int readers=0; }
private int writers=0; private synchronized void releaseRead(){
readers--;
private int writersWating=0; notifyAll();
private int readersWating=0; }
private int readersToWait=0;
@0verride private synchronized void aquireWrite(){
public Lock readlLock() { writersWating++;
return readerlock; while(writers>@ || readers>@ || readersToWait>@){
} try {
wait();
@0verride } catch (InterruptedException e) { e.printStackTrace(); }
public Lock writelLock() { } i .
return writerlock; writersWating--;
} i writers++;

private synchronized void releaseWrite(){
writers--;
readersToWait = readersWating;
notifyAll();

LockFreeSensors

public long get(double val[])

{

SensorData d = data.get();

double[] v = d.getValues();

if (v == null) return @,

for (int 1=0; i<v.length; ++1i)
val[i] = v[i];

return d.getTimestamp();

class LockFreeSensors implements Sensors {
AtomicReference<SensorData> data;

LockFreeSensors()

{
}

data = new AtomicReference<SensorData>(new SensorData(@L, new double[@]));

public void update(long timestamp, double[] val)

{

SensorData old_data;
SensorData new_data = new SensorData(timestamp, val);
do {
old_data = data.get();
if (old_data !'= null &&% old_data.getTimestamp() >= new_data.getTimestamp()) {
return;

1
} while (!data.compareAndSet(old_data, new_data));

Is the previous implementation wait free?

Yes

Given that the threads update (or try to update) the entry in a given time
interval only finitely often, the method call is bounded and cannot
continuously retry. This is the case since the time stamp of the entry is
strictly increasing. If our time stamp is older, we return. If our time stamp is
newer, there are only finitely many other threads with updates which have
a time stamp in between the current time stamp and our time stamp. That is
why our method call will always finish in a bounded number of steps.

Hence, it is wait-free.

Pre-Discussion: Assignment 13

Histories and their properties:
Sequential Consistency
Linearizability

Equivalence

Completeness

etc.

10

Sequential Consistency

For each of the following histories, indicate if they are sequentially consistent or not. In the following the
objects r and s are registers (initially zero), q is a FIFO (initially empty).

A: -—lr.write(l) |-—— -

B: - lr.read () : 0| -——————-m-mmmmm
C |r.read () :1|-———-—-—
A: g.eng(5)

B: g.eng(3)

A: void

B: void

A: g.deq()

B: g.deq()

A: 3

B: 3

A -—|s.write(1) | ===

B: —————- |r.read():0|-—-—-————————————————
C: —mmmmmmm e lr.read():1|-——---
A: --|s.write(1l) |-- ===

B: = |r.read():1|-—|r.read() :0| ————

Linearizability

Which of the following histories are linearizable? Infer the object type from the supported operations,
registers are initially zero, stacks/queues initially empty.

A: s.push(l)

A: void

B: s.push(2)

B: void

B: s.pop()

A: s.popl()

B: 1

A: 2

A: —-|s.write(1l)|
B: —mmme- |r.read():1|---|r.read():0|-==--=
Equivalence

Give two different well-formed histories H1 and H2, which are equivalent to each other.

Incomplete Histories

‘When histories are obtained from a program trace, the history might be incomplete, i.e., if tracing stopped
before the program completed. In the lecture you learned that this can be dealt with in two ways. Explain
them. Why do we need both ways? Give an example where di ing all pending i ions will lead to
a non-linearizable history, but adding a response will lead to a linearizable history.

Deifference between Sequential Consistency and Linearizability

Give a history which is sequentially consistent but not linearizable.

Recap Histories

Histories can be categorized by some fundamental properties:

Sequential: 15t action invocation; no interleavings

Complete: no pending invocations

Equivalence to some other History: for all threads A: H|A = G|A
Legal: for all objects r: H|r is sequential and correct

Well formed: for all threads A: H|A is sequential

Quiescent Consistent: correct with reordering of “overlapping” calls
Sequentially Consistent: correct with reordering regarding threads
Linearizable: choosing linearization points to make execution correct

Note: the above definitions are not formal

12

Sequential Consistent
(not composable)

¥R P&

Linearizable
(composable)

(composable)

Quiescent Consistent *

Exam Questions

Geben Sie eine Definition zu jeder der folgen- Give a definition for each of the following
den Eigenschaften von Locks an: lock properties:

Fair

Deadlock Free

Starvation Free

Geben Sie eine Definition zu jeder der folgen-
den Eigenschaften von Locks an:

Fair

A lock is fair if it fulfills FIFO order.

Give a definition for each of the following
lock properties:

Deadlock Free

Starvation Free

Geben Sie eine Definition zu jeder der folgen- Give a definition for each of the following
den Eigenschaften von Locks an: lock properties:

Fair

A lock is fair if it fulfills FIFO order.

Deadlock Free
When one or more threads are competing for the lock, at least one of those

threads is guaranteed to acquire the lock within a finite amount of time.

Starvation Free

Geben Sie eine Definition zu jeder der folgen- Give a definition for each of the following
den Eigenschaften von Locks an: lock properties:

Fair

A lock is fair if it fulfills FIFO order.

Deadlock Free
When one or more threads are competing for the lock, at least one of those

threads is guaranteed to acquire the lock within a finite amount of time.

Starvation Free

When one or more threads are competing for the lock, every thread is guaranteed

to acquire the lock within a finite amount of time.

Is every lock that is starvation free and
deadlock free also fair? Give a proof or
counter example.

Is every lock that is starvation free and
deadlock free also fair? Give a proof or
counter example.

Counter example:

Filter Lock

Is every fair lock also starvation-free and
deadlock free? Give a proof or counter
example.

Is every fair lock also starvation-free and
deadlock free? Give a proof or counter
example.

Counter example:

A lock where the lock method never returns.
FIFO not violated but lock is neither starvation-free nor deadlock-free.

Non-blocking Blocking

(no locks) (locks)

Everyone makes
progress

Starvation-free

|43

Deadlock-free

Wait-free

|23

Someone make progress Lock-free

Deadlock-free & fair => Starvation-free

custom

Amdahl’s Law Illustrated

P=1 P=2 P=4 P=8
Serial work I
i I III HEEEEEEN
arallelizable work

awi|

24

Amdahl’s Law — Ingredients

Given P workers available to do parallelizable work, the times for
sequential execution and parallel execution are:

T; = Wser + VVpar

And this gives a bound on speed-up:

I/Vpa'r'
P

Ty = Wser +

< Wser + vaar 1

p = W, = 1—f
I/Vse'r + 2 £ T P

| =

custom

custom

Gustafson’s Law

Serial work

P=1 P=2 P=4 P=8
Paraezabewnrkl |I II|I III|IIII

awi |

-

26

Gustafson’s Law

W=Ff+«+W+(1—f)+«W

Wp=f«xW4+Px(1-£f)xW

Sp=f+P(1-f)
=P—f(P-1)

custom

27

Consider a program with 20% of the code that is sequential
and 80% of the code that is parallelized. Assume that the
parallelizable code scales linearly and the sequential runtime
of the program is T1 = 100. What is the speedup S8 when
executed on 8 CPUs?

Consider a program with 20% of the code that is sequential
and 80% of the code that is parallelized. Assume that the
parallelizable code scales linearly and the sequential runtime
of the program is T1 = 100. What is the speedup S8 when
executed on 8 CPUs?

S_8=100/30 = 3.333333...

A program has 40% sequential code and 60% parallelized code running on a

machine with 6 cores. To improve parallel performance, you can either:

A) Hire a developer to parallelize 80% of the code (up from 60%).

B) Buy a better machine with 120 cores. According to Amdahl's law, which of
these options leads to better speedup? Briefly explain why.

A program has 40% sequential code and 60% parallelized code running on a

machine with 6 cores. To improve parallel performance, you can either:

A) Hire a developer to parallelize 80% of the code (up from 60%).

B) Buy a better machine with 120 cores. According to Amdahl's law, which of
these options leads to better speedup? Briefly explain why.

Option A:
We get a speedup of 3

Option B:
We get a speedup < 2.5

Choose option A.

Pipelining: Main Concepts Recap

Latency

time needed to perform a given computation
(e.g., process a customer)

Throughput

amount of work that can be done by a system in a given period of time
(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline

a pipeline is balanced if each stage takes the same length of time

essential

Instance vs. Stage

Stage

student 2 1
student 3 -
student 4 -

33

Latency

Generally, you can take the total time of the first instance.
latency = total_time(first_instance) = sum(time(all_stages))

If not constant, you can calculate it for the n-th instance.
latency
= total_time(first_instance) + (max(time_stage) — time(first_stage)) - (n — 1)

Definition 4.2.2. Throughput is the number of elements that exit the pipeline (at full capacity)
per a given time unit. Throughput can be calculated as follows for any pipeline with one execution

unit per stage: .

maz(computationtime(stages))

Throughput =

Definition 4.2.3. Throughput under consideration of lead-in and lead-out time given n
elements traverse the pipeline is the average time it takes to output an element. This throughput
can be calculated as follows for any pipeline with one execution unit per stage:

n
overall time for n elements

n
n * max(computationtime(stages)) + sum(computationtime(all stages except longest))

https://polybox.ethz.ch/index.php/s/IKwim2lqvWYP79UB?path=%2F Skript#pdfviewer

Consider a pipeline with three stages with the following execution times:

Stage 1: 50 sec

Stage 2: 25 sec

Stage 3: 25 sec

a) What is the throughput of this pipeline?

b) What is the speedup of this pipeline compared to sequential
execution?

Consider a pipeline with three stages with the following execution times:

Stage 1: 50 sec

Stage 2: 25 sec

Stage 3: 25 sec

a) What is the throughput of this pipeline?

b) What is the speedup of this pipeline compared to sequential
execution?

Throughput
1 /350 sec

Speedup
S pipelined = throughput_pipelined / throughput_sequential
=2

trim
40 ms

sharpen COMPTress
50 ms 30 ms

You want to optimize the pipeline by du-
plicating the execution unit for a stage of
your choice (i.e., provide two units that
can work in parallel but with the same
processing time). What unit would you
duplicate? Write down two advantages
of the optimized pipeline compared to
the original pipeline.

upload
40 ms

trim
40 ms

sharpen
50 ms

You want to optimize the pipeline by du-
plicating the execution unit for a stage of
your choice (i.e., provide two units that
can work in parallel but with the same
processing time). What unit would you
duplicate? Write down two advantages
of the optimized pipeline compared to
the original pipeline.

COMpPress
30 ms

Duplicate sharpen:
Throughput increased
Constant latency

upload
40 ms

A: Load B: Pre-Process C: Train D: Update
40 ms 20 ms 60 ms 20 ms

How long should stage C take, in order
for the pipeline to be balanced?

A: Load B: Pre-Process C: Train D: Update
40 ms 20 ms 60 ms 20 ms

How long should stage C take, in order
for the pipeline to be balanced?

40ms

A: Load
40 ms

B: Pre-Process C: Train
20 ms 60ms-

40ms

Stage C consists of 20% non-
parallelizable work. Calculate how
many processors are needed to achieve
the execution time of stage C that
you stated in task c)i), assuming the
amount of work stays constant. Use
the correct speedup law, and justify
your choice in one or two sentences.

D: Update
20 ms

A: Load B: Pre-Process C: Train
40 ms 20 ms 60ms-
40ms

Stage C consists of 20% non-
parallelizable work. Calculate how
many processors are needed to achieve
the execution time of stage C that
you stated in task c)i), assuming the
amount of work stays constant. Use
the correct speedup law, and justify
your choice in one or two sentences.

We need 2 processors

D: Update
20 ms

Both, ForkJoin and ExecutorService,
schedule tasks to threads.

Both, ForkJoin and FExecutorService,
schedule tasks to threads.

Both, ForkJoin and ExecutorService,
maintain a pool of threads that is
reused for multiple tasks.

Both, ForkJoin and ExecutorService,
maintain a pool of threads that is
reused for multiple tasks.

ExecutorService is better suited than
ForkJoin if there are dependencies be-
tween tasks.

ExecutorService is better suited than
ForkJoin if there are dependencies be-
tween tasks.

For each of the following three histories,
indicate if it is linearizable and/or se-
quentially consistent. Assume r is an
atomic register which is initialized with

0.

.write(1)
.write(0)
rvoid
:void
.read ()
.read ()
|

: 0

.
= 0 = e =
H H R H R H K H

For each of the following three histories,
indicate if it is linearizable and/or se-
quentially consistent. Assume r is an
atomic register which is initialized with

0.

.write(1)
.write(0)
:void
:void
.read ()
.read ()
|

: 0

.
= 0 = e =
H H R H R H K H

Not SC
Thus also not linearizable

Mark the critical path of the task graph
shown in Figure 2. What is the execu-
tion time of the critical path?

Mark the critical path of the task graph
shown in Figure 2. What is the execu-
tion time of the critical path?

Execution Time: 260

w

What is the minimum number of proces-
sors necessary to execute the task graph
in Figure 2 as quickly as possible?

%
RO RE

220 150 @

230

250 @

What is the minimum number of proces-
sors necessary to execute the task graph
in Figure 2 as quickly as possible?

We need 2 processors

1 class Position {

2 private int count = 0;
3 private int price 0;
1 private ReentrantLock lock = new ReentrantLock(true);

6 public void writePosition(Data data) {

7 lock.lock();

s count = data.getCount();

9 price = data.getPrice();

10 lock.unlock();

11 F

12

13 public Data readPosition() {

14 lock.lock();

15 Data result = new Data(count, price);

16 lock.unlock();

17 return result;

18 }

19 }
O Der Code ist wait-free. The code is wait-free.
O Der Code ist starvation-free. The code is starvation-free.
O Der Code ist lock-free. The code is lock-free.

O Der Code ist deadlock-free. The code is deadlock-free.

1 class Position {

2 private int count = 0;

3 private int price = 0;

1 private ReentrantLock lock = new ReentrantLock(true);

6 public void writePosition(Data data) {

7 lock.lock();

8 count = data.getCount();

9 price = data.getPrice();

10 lock.unlock();

11 F

12

13 public Data readPosition() {

14 lock.lock();

15 Data result = new Data(count, price);

16 lock.unlock();

17 return result;

18 }

19 }
O Der Code ist wait-free. The code is wait-free.
#8 Der Code ist starvation-free. The code is starvation-free.
O Der Code ist lock-free. The code is lock-free.

8 Der Code ist deadlock-free. The code is deadlock-free.

1 class Position {
2 private volatile Data data;

4 public void writePosition(Data update) {

5 data = update;

6 }

7

s public Data readPosition() {

9 return data;

10 }

11}

Kreuzen sie alle korrekten Aussagen an Mark all correct statements.
O Der Code ist wait-free. The code is wait-free.
O Der Code ist starvation-free. The code is starvation-free.
O Der Code ist lock-free. The code is lock-free.

O Der Code ist deadlock-free. The code is deadlock-free.

1 class Position {
2 private volatile Data data;

4 public void writePosition(Data update) {

5 data = update;

6 }

7

s public Data readPosition() {

9 return data;

10 }

11}

Kreuzen sie alle korrekten Aussagen an Mark all correct statements.
8 Der Code ist wait-free. The code is wait-free.
8 Der Code ist starvation-free. The code is starvation-free.
8 Der Code ist lock-free. The code is lock-free.

8 Der Code ist deadlock-free. The code is deadlock-free.

Kreuzen sie alle korrekten Aussagen an. Mark all correct statements.

O Das Peterson Lock ist frei von Starvation.
O Das Filter Lock ist fair.

O Das Bakery Lock unterstiitzt mehr als zwei

Threads.
0 Das Peterson Lock erweitert das Filter

Lock mit Unterstiitzung fiir mehr als zwei
Threads.

The Peterson Lock is starvation free.
The Filter Lock is fair.

The Bakery Lock supports more than
two threads.

The Peterson Lock extends the Fil-
ter Lock to support more than two
threads.

Kreuzen sie alle korrekten Aussagen an. Mark all correct statements.

8 Das Peterson Lock ist frei von Starvation.
O Das Filter Lock ist fair.

8 Das Bakery Lock unterstiitzt mehr als zwei

Threads.
0 Das Peterson Lock erweitert das Filter

Lock mit Unterstiitzung fiir mehr als zwei
Threads.

The Peterson Lock is starvation free.
The Filter Lock is fair.

The Bakery Lock supports more than

two threads.
The Peterson Lock extends the Fil-

ter Lock to support more than two
threads.

Critical Section: p2 and g2

p2,93,1| |p1,q3,1 p3,91,0 p3,92,0

T

p2,92,1 p2,92,0

p2,ql,1 pl,q92,0

This program can deadlock. rue alse
T leadlock T Fal

Critical Section: p2 and g2

p2,93,1| |p1,q3,1 p3,91,0 p3,92,0

T

p2,92,1 p2,92,0

p2,ql,1 pl,q92,0

This proeram can deadlock.) alse
This program can deadlock True False

Critical Section: p2 and g2

p2,93,1| |p1,q3,1 p3,91,0 p3,92,0

T

p2,92,1 p2,92,0

p2,ql,1 pl,q92,0

This program can livelock. (O True (O False

Critical Section: p2 and g2

p2,93,1| |p1,q3,1 p3,91,0 p3,92,0

T

p2,92,1 p2,92,0

p2,ql,1 pl,q92,0

This program can livelock. (O True 8 False

p2,93,1

p2,92,1

p2,q91,1

This program provides mu-

Critical Section: p2 and g2

[p1,93,1

p3,91,0

T

tual exclusion.

() True

p3,92,0

p2,92,0

pl,q92,0

() False

p2,93,1

p2,92,1

p2,q91,1

This program provides mu-

Critical Section: p2 and g2

[p1,93,1

p3,91,0

T

tual exclusion.

8 True

p3,92,0

p2,92,0

pl,q92,0

() False

p2,93,1

p2,92,1

p2,q91,1

This program is wait-free
(assume critical section is an

Critical Section: p2 and g2

[p1,93,1

T

p3,91,0

p3,92,0

p2,92,0

atomic instruction).

(O True

pl,q92,0

(O False

p2,93,1

p2,92,1

p2,q91,1

This program is wait-free
(assume critical section is an

Critical Section: p2 and g2

[p1,93,1

T

p3,9l1,0 p3,92,0

p2,92,0

atomic instruction).

pl,q92,0

True False
O

Assume p and q both execute a code
which is 100 instructions long. The vari-
able n is a 32-bit integer. If we use the
notation introduced above, what is the
maximum number of states in the state
diagram?

Assume p and q both execute a code
which is 100 instructions long. The vari-
able n is a 32-bit integer. If we use the
notation introduced above, what is the
maximum number of states in the state
diagram?

100*100*2"32

Parallel Patterns

« We are now quite familiar with how to parallize algorithms
 There are a few recurring patterns that are important to know

Map, Reduction, Stencil, Scan, Pack

Reduction

« Areduction is an operation that produces a single answer
from a collection (array etc) via an associative operator.

* Needs to be associative. Otherwise divide-and-conquer won't
work

Example: array sum

Map

« Operates on each element of the input data indenpendently
(each array element)

« Qutput is the same size - no size reduction
* Doesn't have to be the same operation on each element

Example: add two arrays

Stencil

« Like map but can take more than one element as input
« Generalization of map and thus also no size reduction

Example:

Image > apply averaging filter on each pixel
Update a value based on its neighbors

Never do it in-place because you would then take values that are
already output values.

Scan

» Collection of data X - return collection of data Y

* Y(i) = functionOf(Y(i- 1) & X(i))

« Seems sequential because of dependencies

« Can parallelize if function is associative = O(log(n)) span

Example: parallel prefix sum

Pack

Collection of data X = return collection of data X if fulfill
condition

@GO@®®@@
X)) X%

(@)

BIC1GIC0

Pack

* First compute bit vector
« Then find index in result array (prefix sum on bit vector)

P0NPOO6 6
BEOPEAE®)

e

CICIGIEIR)

For each of the code snippets below, state
whether the operation is a Map, Reduce,
Prefix, or Pack and calculate the output of
the function.

double method_a(){
double[] vecl = {10.0, 0.0, 2.0};
double[] vec2 = {4.0, 4.0, 1.0};
double sum = 0.0;
for(int i = 0; i < vecl.length; i++){
sum += vecl[i] * vec2[i];

}

return sum;

For each of the code snippets below, state
whether the operation is a Map, Reduce,
Prefix, or Pack and calculate the output of
the function.

double method_a(){
double[] vecl = {10.0, 0.0, 2.0};
double[] vec2 = {4.0, 4.0, 1.0};
double sum = 0.0;
for(int i = 0; i < vecl.length; i++){
sum += vecl[i] * vec2[i];

}

return sum;

Reduce, sum =42

String[] method_b(){
String[] vec = {"Apple", "Bean", "Banana", "Pear'};
boolean[] keepElem = new bool[vec.length];
int[] numKept = new int[vec.length + 1];
numKept [0] = 0;

for(int i = 0; i < vec.length; i++){
if (vec[i].length() > 4){
keepElem[i] = true;
numKept [i+1] = numKept[i] + 1;
} else {
keepElem[i] = false;
numKept [i+1] = numKept[i];

}

String[] out = new String[numKept[numKept.length-1]];
int j = 0;

for(int i = 0; i < vec.length; i++){
if (keepElem[i] == true)q{
out[j] = vecl[il;
jt+;

return out;

String[] method_b(){
String[] vec = {"Apple", "Bean", "Banana", "Pear'};
boolean[] keepElem = new bool[vec.length];
int[] numKept = new int[vec.length + 1];
numKept [0] = 0;

for(int i = 0; i < vec.length; i++){
if (vec[i].length() > 4){
keepElem[i] = true;
numKept [i+1] = numKept[i] + 1;
} else {
keepElem[i] = false; Pack
numKept [i+1] = numKept[i];

¥ out = {,Apple“, ,Banana‘“}
String[] out = new String[numKept[numKept.length-1]];
int j = 0;

for(int i = 0; i < vec.length; i++){
if (keepElem[i] == true)q{
out[j] = vecl[il;
J++;

3

return out;

int[] method_c(){
int[] vec = {0, 3, -3, 0, 1};

for(int i = 0; i < vec.length; i++){
if (vec[i] < 0){
vec[i] = -vecl[i];
}
}

return vec;

int[] method_c(){
int[] vec = {0, 3, -3, 0, 1};

for(int i = 0; i < vec.length; i++){
if (vec[i] < 0){
vec[i] = -vecl[i];
}
}

return vec;

Map, vec = {0, 3, 3, 0, 1}

int [] method_d(O{
int[] vec = {1, 2, 3, 4, 5};
int[] out = new int[vec.length];
out [0] = vec[0];

for(int i = 1; i < vec.length; i++){
out[i] = vec[i] * out[i-1];
}

return out;

int [] method_d(O{
int[] vec = {1, 2, 3, 4, 5};
int[] out = new int[vec.length];
out [0] = vec[0];

for(int i = 1; i < vec.length; i++){
out[i] = vec[i] * out[i-1];

}

return out;

Scan, out = {1, 2, 6, 24, 120}

Kahoot

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Gustafson‘s Law
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Pipelining: Main Concepts Recap
	Slide 33: Instance vs. Stage
	Slide 34: Latency
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Parallel Patterns
	Slide 73: Reduction
	Slide 74: Map
	Slide 75: Stencil
	Slide 76: Scan
	Slide 77: Pack
	Slide 78: Pack
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

