
Parallel Programming
Exercise Session 11



Outline

2

• Post-Disc. Assignment 10
• Pre-Disc. Assignment 11
• Theory
• Kahoot



Feedback: Assignment 10

3



Assignment 10

4

Dining Philosophers (naive attempt):
One philosophers left side 

is anothers right side!

But we take left first, then 

right. So we hold one fork, 
then wait – leads to cycle 

in dependency graph.

Essential



Assignment 10

5

Dining Philosophers:

• To avoid cyclic dependencies: Lock-ordering!

• Number all forks, take the one with smaller number first.
• Same principle we saw with bank-account already!

Essential



Assignment 10

6

F0

F1

F2

F3

F4

Take 

smaller first 
- success

Take 

bigger next 
- success

Take 

smaller first 
- success

Take 

bigger next 
- success

Two can eat at the

same time.

Three is impossible 

(would need six forks). 

Essential



Assignment 10

7

F0

F1

F2

F3

F4
Now only one is eating.

All others have to wait -
Not great, not terrible (no 

deadlock!)



Assignment 10

8

Now only one is eating.

All others have to wait -
Not great, not terrible (no 

deadlock!)

Dining Philosophers:

• The only way to ensure that two can always
eat at the same time is to introduce additional 
elements (communication, a waiter, etc.)



Assignment 10 – Bridge with monitor

9

Is this really needed?

Why notifyAll()? 

We only want to wake up one 
car or maybe a truck (if 

carCount ==0)

Essential



Assignment 10 – Bridge with condition

10

Make two separate groups of 

“waiters”

Essential



Assignment 10 – Bridge with condition

11

Choose who to wake up based 

on conditions.

Essential



Assignment 10 – Semaphore implementation

12

Why a while loop here and not 

an if?

Can we also use notify here?

Essential



Assignment 10 – Barrier implementation

13

Essential

Why do we distinguish 

between draining and non-
draining?



Assignment 11

14



Assignment 11

15

• Implement SortedList with different lock strategies

• Exercise about effective use of locks
• Coarse grained vs. fine grained locks
• Tricks to avoid locking altogether for certain operations

• Measure the performance impact of your implementation choice



SortedListInterface

Add, Remove and Find unique elements in a sorted linked list.

add(c)

16

a b d e

Essential



SortedListInterface

Add, Remove and Find unique elements in a sorted linked list.

add(c)

find b and d

b.next=c

c.next=d
17

a b d e

c

Essential



SortedListInterface

Add, Remove and Find unique elements in a sorted linked list.

remove(c)

18

a b c d

Essential



SortedListInterface

Add, Remove and Find unique elements in a sorted linked list.

remove(c)

find b and c

b.next=c.next

19

a b c d

Essential



List and Node

public interface SortedListInterface<T extends Comparable<T>> {

public boolean add (T item);

public boolean remove (T item);

public boolean contains (T item);

}

20

Make sure we can sort 
the entries in the list!

Implement those methods in a 
thread-safe way



Implementation tipps

21

• Keep an abstract Node to store list element:

private class Node {

public Node next ;

public T item;

}

• Code is simpler if we always have two sentinel nodes in the list:

public SequentialList() {

first = new Node(Integer.MIN_VALUE);

first.next = new Node(Integer.MAX_VALUE);

}



Coarse Grained Locking

22

public synchronized boolean add(T x) {...};

public synchronized boolean remove(T x) {...};

public synchronized boolean contains(T x) {...};

add(c)

a b d e

Essential



Coarse Grained Locking

23

public synchronized boolean add(T x) {...};

public synchronized boolean remove(T x) {...};

public synchronized boolean contains(T x) {...};

a b d e

Essential



Coarse Grained Locking

24

public synchronized boolean add(T x) {...};

public synchronized boolean remove(T x) {...};

public synchronized boolean contains(T x) {...};

Simple, but a bottleneck for many threads, why?

a b d e

c

Essential



Fine grained Locking

Often more intricate than visible at a first sight

• requires careful consideration of special cases

Idea: split object into pieces with separate locks

• no mutual exclusion for algorithms on disjoint pieces

25

Essential



Let's try this

remove(c)

26

a b c d

Essential



Let's try this

remove(c)

Locking the predecessor is ok?

27

a b c d

Essential



Let's try this

A: remove(c)

B: remove(b)

c not deleted! 

28

a b c d

AB

Essential



What’s the problem?

When deleting, the next field of next is read, i.e. next also has to be 
protected.

29

a b d e

BB

find a and b

a.next=b.next

Essential



Let's try this

A: remove(c)

B: remove(b)

When removing, lock the successor defensively. 

Problem solved: c not deleted! 
30

a b c d

AB

B

A

Waiting

Essential



Let's try this

A: remove(c)

B: remove(b)

When removing, lock the successor defensively. 

Problem solved: c not deleted! 
31

a b c d
B B

Essential



What about add?

add(b’)

32

a b c d

b’

Essential



What about add?

A: add(b’)

B: remove(b)

b’ not added! 

33

a b c d

b’

AB

Essential



What about add?

A: add(b’)

B: remove(b)

Also when adding lock the successor defensively. 

Problem solved: b’ not added! 
34

a b c d

b’

AB

B
Waiting

A

Essential



What about add?

A: add(b’)

B: remove(b)

Also when adding lock the successor defensively. 

Problem solved: b’ not added! 
35

a b c d

b’

B B

Essential



Hand-over-hand locking (remove d)

36

a b d e

pred=-∞,curr=a
check(a<d)

a b d e

pred=a,curr=b
check(b<d)

a b d e

pred=b,curr=d
check(d<d)
if(d==d)
remove(d)

Essential



Hand-over-hand locking (remove d)

37

a b d e

pred=-∞,curr=a
check(a<d)

a b d e

pred=a,curr=b
check(b<d)

a b d e

pred=b,curr=d
check(d<d)
if(d==d)
remove(d)

What about add(c)
and contains(e)?

Essential



Hand-over-hand locking

Benefits:

• Multiple readers and writers can be actively doing work in the 
same list.

• Readers and writers that are traversing the list in the same order 
will not pass each other (they cannot overtake another 
operation).

• The locks taken on parts of the list won't deadlock with each 
other, because multiple locks are acquired in the same order.

38

Essential



Hand-over-hand locking

But what’s bad?

• We can have “traffic jam”, Threads can’t overtake each other

• O(n) locks acquired/released => Big Overhead!

39

Essential



Optimistic Synchronization

40



Idea

Algorithm:

• find nodes without locking,

• then lock the two nodes and 

• check that everything is ok (validation)

• if so perform the operation (add, remove or contains) and return true

• if not return false

• finally release the two locks

e.g. add(c)
41

Essential



add(c) Aha!

Finding without locking

a b d e

Essential



add(c)

Locking

a b d e

Essential



add(c)

a b d e

Validation

Essential



add(c)

a b d e

Yes. b is still reachable 
from head.

Validation

Essential



add(c)

a b d e

Yes. b still points to d.

Validation

Essential



c

add(c)

a b d e

Essential



c

add(c)

a b d e

Essential



Validation: what can go wrong?

A: add(c)
A: find insertion point

B: remove(b)

A: lock

A: validate: rescan

A: b not reachable

→return false

49

a b d e

a b d e
A A

a b d e
B B

Essential



Validation: what can go wrong?

A: add(c)
A: find insertion point

B: add(b')

A: lock

A: validate: rescan

A: d != succ(b)

→return false

50

a b d e

a b d e
B B

b'

a b d e
A A

b'

Essential





Correctness (remove c)

If

• nodes b and c both locked

• node b still accessible

• node c still successor to b

then

• neither will be deleted

• ok to delete and return true

If

• nodes b and d both locked

• node b still accessible

• node d still successor to b

then

• neither will be deleted

• no thread can add between b 
and d

• ok to return false

52

Essential



Optimistic List

Good:

No contention on traversals.

Traversals are wait-free.

Less lock acquisitions.

Bad:

Need to traverse list twice (find + validate)

contains() method needs to acquire locks

53

Essential

Why didn‘t we need to validate

with hand-over-hand locking?



Lazy Synchronisation

54



Lazy List

Like optimistic list but

• scan only once

• contains() never locks

How?

• Removing nodes causes trouble

• do it "lazily”

• add a special ”removed?” flag to the nodes

55



New Validate 

Given two locked nodes

• Pred is not marked

• Curr is not marked

• Pred points to Curr

56

b c

? ?
?



Lazy List: Remove

Find nodes to remove (as before)

Lock predecessor and current (as before)

Validate (new validation)

Logical delete: mark current node as removed

Physical delete: redirect predecessor's next

e.g. remove(c)

57

a b c d

volatile needed?



Invariant

If a node is not marked then
• it is reachable from head
• and reachable from its predecessor
Only check if nodes are adjacent. Why? 

A: remove(c)
lock

check if b or c are marked

not marked? ok to delete:

mark c

delete c

58

a b c d



What is validate() now?





Lazy List: Add

Find nodes to where to add (as before)

Lock predecessor and current (as before)

Validate (new validation)

Physical add: change predecessor's next

e.g. add(b’)

61

a b c d

b’



Lazy List: Contains

Find nodes to return without locking

Return true if node is not marked

e.g. contains(b)

62

a b c d

?



New Validation: What can go wrong?

63

a b d e

a b d e
A A

A: add(c)
A: find insertion point

B: remove(b)

A: lock

A: validate: marks + pred --> curr

A: b marked

→return false

a b d e
B B



New Validation: What can go wrong?

A: add(c)
A: find insertion point

B: add(b')

A: lock

A: validate: marks + pred --> curr

A: pred –x-> curr

→return false

64

a b d e

a b d e
B B

b'

a b d e
A A

b'







Lock-free Datastructures



















ABA Problem

"The ABA problem occurs when one activity fails to recognize that a 
single memory location was modified temporarily by another
activity and therefore erroneously assumes that the overall state
has not been changed."



ABA Problem



Pointer Tagging

Use some bits of the adress for an always incrementing counter. 

ABA Problem less likely. 

Still possible when the counter overflows. 



Hazard Pointers



Hazard Pointers



Kahoot


	Slide 1
	Slide 2
	Slide 3: Feedback: Assignment 10
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Assignment 11
	Slide 15
	Slide 16: SortedListInterface
	Slide 17: SortedListInterface
	Slide 18: SortedListInterface
	Slide 19: SortedListInterface
	Slide 20: List and Node
	Slide 21: Implementation tipps
	Slide 22: Coarse Grained Locking
	Slide 23: Coarse Grained Locking
	Slide 24: Coarse Grained Locking
	Slide 25: Fine grained Locking
	Slide 26: Let's try this
	Slide 27: Let's try this
	Slide 28: Let's try this
	Slide 29: What’s the problem?
	Slide 30: Let's try this
	Slide 31: Let's try this
	Slide 32: What about add?
	Slide 33: What about add?
	Slide 34: What about add?
	Slide 35: What about add?
	Slide 36: Hand-over-hand locking (remove d)
	Slide 37: Hand-over-hand locking (remove d)
	Slide 38: Hand-over-hand locking
	Slide 39: Hand-over-hand locking
	Slide 40: Optimistic Synchronization
	Slide 41: Idea
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Validation: what can go wrong?
	Slide 50: Validation: what can go wrong?
	Slide 51
	Slide 52: Correctness (remove c)
	Slide 53: Optimistic List
	Slide 54: Lazy Synchronisation
	Slide 55: Lazy List
	Slide 56: New Validate 
	Slide 57: Lazy List: Remove
	Slide 58: Invariant
	Slide 59
	Slide 60
	Slide 61: Lazy List: Add
	Slide 62: Lazy List: Contains
	Slide 63: New Validation: What can go wrong?
	Slide 64: New Validation: What can go wrong?
	Slide 65
	Slide 66
	Slide 67: Lock-free Datastructures
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76: ABA Problem
	Slide 77: ABA Problem
	Slide 78: Pointer Tagging
	Slide 79: Hazard Pointers
	Slide 80: Hazard Pointers
	Slide 81: Kahoot

