Parallel Programming

Exercise session 9



Today

* Post-Discussion Ex. 8
* Dekker‘s Lock (a deeper look)

* Kahoot
* Q&A all the topics until now



Post-Discussion Ex. 8



Assume there are two Java threads, sharing the variables v, w, X, y and z. The variables rl1 and r2 are
private. Assume the code these two threads are executing looks as follows:

Thread 1 | Thread 2
x=23; y=42;
rl =x; 2 =y;
v=rl; W =12;
z=2;

Is the result (the values of the variables after both threads finish the execution) always the same or could it
depend on the order in which the threads are scheduled?

The result does not depend on the interleaving. Thread 1 will always see r1=23 and thread 2

always r2=42. The reason that this codes outcome does not depend on the interleaving of threads is that
there are no conflicting accesses (at least two accesses by different threads to the same shared variable, of
which one is a write).



Thread 1 | Thread 2
X =23; y =42;
rl =x; r2=y;
v=rl; W =T12;
y =2; z=2;

How about this piece of code, 1s the result always the same or does it depend on the scheduling of the
threads?

The result does depend on the interleaving. Both threads access the shared
variable y and both write to it.
Thus the value of r2 depends on the order of the last write, either r2=42 or r2=2.



Recap: Relations

iL- OW(j v.fJAHOV\
¢ € XK x...x X

L~ Mq; ( ¥\wd3 wefatiow

. c

AXXQ—

ENO-»-?D\-( (< velaAiow ouw
< < N xN

N ):



Relations can have different properties, for example:

Symmetry: Vsg,s1 € S : sgRs1 — s1Rsg
Reflexivity: Vsy € S : sgRsg
Transitivity: VS[), S1,82 € S : 80R81 /\ 81R82 — S()RSQ

Ad (s wttvic aRL A LRa = a=b



Show that the relation ”beats” in the game of rock-paper-scissors 1s not transitive.

We have:
Scissors beats paper
Paper beats rock

If beats were transitive, we would have:
Scissors beats rock

However, this does not hold. Thus, beats is not transitive



Recap: Transitive Closure
Q .
p— R a) Q\ (wL-Lr-q Q otm«')‘\‘-&d\ CQM—{)QS'.('RQ\A aal MOW()
U e

(=4

1 =
%\:\-4
R =



For the set S : {a,b,c,d, e, f} and the relation X over S : (a,b), (c,d), (a,c), (e, f) give the transitive
closure X .

X*:(a, b), (c,d), (a, c), (e, f), (a, d)



Program order is the relation given to actions performed by a thread. We write S1 — S2 to express that the
action S1 is performed immediately before S2. Note that in a loop, each traversal of the loop body would
generate new actions. For the (sequential) code below, which of the statements/actions are in program
order? What is the transitive closure of the program order relation on the piece of code below?

Sl: a=23;

S2: x=3;

S3: 1if (x==3) {
S4: Db += 1;

} else {
S5: b = 2;
S6: x = 0;
}
S7T: x=4;

—: (S1,52), (52, S3), (53, 54), (54, ST)
—+: (51, 52), (52, 53), (53, S4), (54, S7)
(S1,53), (S1,54), (S1,87), (52, S4), (52, S7), (S3, S7)



int funca() {
for (int i=0; 1<9999; i++) {
b=3;
}

return b;

}

How could a compiler optimize funca() so that it still behaves as intended to an ”observer” who 1s simply
calling the function and using the return value?

A “good” compiler will deduce that this function always returns three
and that the for-loop can be removed.



Thread 1 | Thread 2
x=1; y=1;
rl =vy; r2 = X;

Output 1: r1=0, r2=1.
Output 2: rl=1, r2=1.

Answer:
7'1:0,?2:1:3::1&}?“1:3;&)3;:1ﬂ)fr2=$
’r'lzl,'r2:1:a:=1iyzlﬂrlzyﬂ)fﬂ:x

Both orders respectthatazzlﬂrlzyandy: 135 r2 = 2.



For the code below, what are the synchronization actions?

x = 0;

volatile ready = false;
Thread 1: Thread 2:

X = 1; 1f (ready) {
ready = true; print (x)

Read and write of volatile variable

When we present such pseudo-code examples we always assume we are seing an excerpt of each
threads code, i.e.,
the instructions shown are surrounded by other instructions not relevant for the task.



x = 0;

volatile ready = false;
Thread 1: Thread 2:

X = 1; 1f (ready) {
ready = true; print (x)

}

The code 1n 4.1 has two possible outcomes, according to our memory model: Nothing gets printed or a

value gets printed. For the case that something gets printed, explain why it can only be the value 1. Use
the happens-before order.

YY) C 'bl\-!.\ -)> \‘_o_g_tl (v“%} &"'“41
wale (<, A L wale ("-'-“ld ’M~q
wod L“-*-’J‘d‘) e 3 t«(v-'k (x)

’C““""‘R"“W Cwil (X, A) g'}s ?v;udc (x)



Important

* Program Order, synchronizes-with, etc. are defined on actions not
program statements



Dekker‘s Lock (a deeper look)



P/ P L

“ L)O‘VIYLG): Live @ ZI_W 4 ucmll7/: Fre
& i(uamloz)([ 17 54%(%‘"*[’9) j

{ =) it o
ucmlp N -(a’se < ,,W'ml,/l/a fa gc/
.LJL‘.’& (‘me’?/f) / =3 uL/E(Jer{* Z)/,
vavLP ZFIM& r

@
» (S @)

? ‘lb\m: 2

@UOVJP: ic\lse u&v’tgpr? 7@/1@@

’q( ‘HAQFC ee & Lolm' (6 W{hem Cw[ﬁlor (H\c 5#,5(, /’ Ll
7%1 ree«o( (PZ womu umlfm ue {@@/7 ’T‘A\? .
\Jl‘Jr[/\ h{f” .‘w{\' o ve's J"U ‘45 CSL



Kahoot



Request topics




	Slide 1: Parallel Programming
	Slide 2: Today
	Slide 3: Post-Discussion Ex. 8
	Slide 4
	Slide 5
	Slide 6: Recap: Relations
	Slide 7
	Slide 8
	Slide 9: Recap: Transitive Closure
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Important
	Slide 17: Dekker‘s Lock (a deeper look)
	Slide 18
	Slide 19: Kahoot
	Slide 20: Request topics

