
Parallel Programming
Exercise Session 8
Week 8

Schedule

Post-Discussion Ex. 7
Theory (Recap and Outlook)
Pre-Discussion Ex. 8
Kahoot

Feedback: Exercise 7

3

Feedback for Assignment 7

public synchronized boolean transferMoney(Account from, Account to, int amount) {

…
…
return true;

}

4

• What is wrong with the following code snippet?

Essential

Feedback for Assignment 7

public class Account … {
…
private final Lock lock = new ReentrantLock();
…

}

5

• What we should have done for avoiding deadlocks

Essential

Feedback for Assignment 7

6

• What we should have done for avoiding deadlocks
public class BankingSystem {

…
public boolean transferMoney(Account from, Account to, aint amount) {

Account first, second;
// Introduce lock ordering:
if (to.getId() > from.getId()) {

first = from; second = to;
} else {

first = to; second = from;
}

…
}

Essential

Feedback for Assignment 7

7

• Acquire locks, use finally to always release the locks
public class BankingSystem {

…
public boolean transferMoney(Account from, Account to, int amount) {

…
first.getLock().lock();
second.getLock().lock();
try {

…
} finally {

first.getLock().unlock();
second.getLock().unlock();

}

Feedback for Assignment 7

8

• Summing up: How to do it safe
Lock each account before reading out its balance, but don’t release the lock until all
accounts are summed up.

➔ Two-phase locking

In the first phase locks will be acquired without releasing,
in the second phase locks will be released.

➔ Deadlocks still a problem
➔ Ordered locking required

Let us take a look at the master solution

Theory (Recap and Outlook)

What will you see soon in the lectures?
● Memory reordering and optimizations
● Orders:

Program Order, Synchronizes-with, Synchronization Order, Happens-before
● State Space Diagrams
● Dekker‘s Algorithm, Peterson Lock, Filter Lock (generalization of Peterson

Lock), Bakery Lock
● Test-and-set (TAS), compare-and-swap (CAS), Test and Test-and-set

(TTAS), Exponential Backoff
● Semaphores and Barriers

We took a look at the following in the last ex. session
● Memory reordering and optimizations
● Orders:

Program Order, Synchronizes-with, Synchronization Order, Happens-
before

● State Space Diagrams
● Dekker‘s Algorithm, Peterson Lock, Filter Lock (generalization of

Peterson Lock), Bakery Lock
● Test-and-set (TAS), compare-and-swap (CAS), Test and Test-and-set

(TTAS), Exponential Backoff
● Semaphores and Barriers

We will additionally take a look at
● Memory reordering and optimizations
● Orders:

Program Order, Synchronizes-with, Synchronization Order, Happens-
before

● State Space Diagrams
● Dekker‘s Algorithm (why is it the way it is), Peterson Lock, Filter Lock

(generalization of Peterson Lock), Bakery Lock
● Test-and-set (TAS), compare-and-swap (CAS), Test and Test-and-set

(TTAS), Exponential Backoff
● Semaphores and Barriers

Let‘s vote: Mentimeter

spcl.inf.ethz.ch
@spcl_eth

class C {
 private int x = 0;
 private int y = 0;
 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

Motivation

Can this fail?

11

Thread 1

Thread 2

spcl.inf.ethz.ch
@spcl_eth

There is no interleaving of f and g causing the assertion to fail

Another proof

13

class C {
 private int x = 0;
 private int y = 0;
 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

Thread 1

Thread 2

spcl.inf.ethz.ch
@spcl_eth

There is no interleaving of f and g causing the assertion to fail
Another proof (by contradiction):

Assume b<a ⇒ a==1 and b==0.

But if a==1 ⇒ y=1 happened before a=y.
And if b==0 ⇒ b=x happened before x=1.

Because we assume that programs execute in order:
a=y happened before b=x
x=1 happened before y=1

So by transitivity,
a=y happened before b=x happened before x=1 happened before
y=1 happened before a=y ⇒ Contradiction

Another proof

13

class C {
 private int x = 0;
 private int y = 0;
 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

Thread 1

Thread 2

But does this really work?

No

Because of:
Optimizations by Compiler
Optimizations by Hardware
(basically Memory Reordering)

spcl.inf.ethz.ch
@spcl_eth

void f() {
x = 1;
y = x+1;
z = x+1;

}

Why it still can fail: Memory reordering

void f() {
x = 1;
z = x+1;
y = x+1;

}

Rule of thumb: Compiler and hardware allowed to make changes that do
not affect the semantics of a sequentially executed program

semantically
equivalent?

15

void f() {
x = 1;
z = 2;
y = 2;

}

semantically
equivalent?

Are these semantically equivalent?

spcl.inf.ethz.ch
@spcl_eth

int x;

void wait() {
x = 1;
while(x==1);

}

void arrive(){
x = 2;

}

Example: Fail with self-made rendezvous (C / GCC)

Assembly without optimization

movl $0x1, x
test:
mov x, %eax
cmp $0x1, %eax
je test

movl $0x2, x

18

spcl.inf.ethz.ch
@spcl_eth

int x;

void wait() {
x = 1;
while(x==1);

}

void arrive(){
x = 2;

}

Example: Fail with self-made rendezvous (C / GCC)

Assembly without optimization

movl $0x1, x
test:
mov x, %eax
cmp $0x1, %eax
je test

movl $0x2, x

Assembly with optimization

movl $0x1, x
test:
jmp test

movl $0x2, x

je: jump (only) if equal,
i.e., if cmp yields true

jmp: jump always

18

spcl.inf.ethz.ch
@spcl_eth

int x;

void wait() {
x = 1;
while(x==1);

}

void arrive(){
x = 2;

}

Example: Fail with self-made rendezvous (C / GCC)

Assembly without optimization

movl $0x1, x
test:
mov x, %eax
cmp $0x1, %eax
je test

movl $0x2, x

Assembly with optimization

movl $0x1, x
test:
jmp test

movl $0x2, x

je: jump (only) if equal,
i.e., if cmp yields true

jmp: jump always

18

spcl.inf.ethz.ch
@spcl_eth

Memory hierachy (one core)

Registers

L1 Cache

L2 Cache

System Memory

fast, low latency, high cost, low capacity

slow, high latency latency, low cost, high capacity

20

ALUs

0.5ns

1 ns

7 ns

100 ns

spcl.inf.ethz.ch
@spcl_eth

Memory hierachy (many cores)

Registers

L1 Cache

Shared L2 Cache

System Memory

21

Registers

L1 Cache

Registers

L1 Cache

…

ALUs ALUs ALUs

spcl.inf.ethz.ch
@spcl_eth

31

Why memory models, x86 example

Answer:
i=1, j=1
i=0, j=1
i=1, j=0
i=0, j=0 (but why?)

spcl.inf.ethz.ch
@spcl_eth

31

Why memory models, x86 example

Answer:
i=1, j=1
i=0, j=1
i=1, j=0
i=0, j=0 (but why?)

Visibility not guaranteed

And even if an action has been executed, we do not have guarantees
that other threads see them (in the correct order).

In other words, actions that were performed by one thread may not be
visible to another thread!
We want to make sure that the actions become visible. And we want
some guarantees on the ordering.

How? Java Memory Model!

spcl.inf.ethz.ch
@spcl_eth

▪ JMM restricts allowable outcomes of programs
▪ You saw that if we don’t have these operations (volatile, synchronized etc.) – outcome can be “arbitrary” (not quite

correct, say unexpected ☺)

▪ JMM defines Actions: read(x):1 “read variable x, the value read is 1”

▪ Executions combine actions with ordering:
▪ Program Order
▪ Synchronizes-with
▪ Synchronization Order
▪ Happens-before

33

Java Memory Model (JMM): Necessary basics

spcl.inf.ethz.ch
@spcl_eth

▪ Program order is a total order of intra-thread actions
▪ Program statements are NOT a total order across threads!

▪ Program order does not provide an ordering guarantee for memory accesses!
▪ The only reason it exists is to provide the link between possible executions and the original program.

▪ Intra-thread consistency: Per thread, the PO order is consistent with the thread’s isolated execution

34

JMM: Program Order (PO)

spcl.inf.ethz.ch
@spcl_eth

▪ Synchronization actions are:
▪ Read/write of a volatile variable
▪ Lock monitor, unlock monitor
▪ First/last action of a thread (synthetic)
▪ Actions which start a thread
▪ Actions which determine if a thread has terminated

▪ Synchronization Actions form the Synchronization Order (SO)
▪ SO is a total order
▪ All threads see SA in the same order
▪ SA within a thread are in PO
▪ SO is consistent: all reads in SO see the last writes in SO

35

JMM: Synchronization Actions (SA) and Synchronization Order (SO)

spcl.inf.ethz.ch
@spcl_eth

▪ SW only pairs the specific actions which "see" each other
▪ A volatile write to x synchronizes with subsequent read of x (subsequent in SO)
▪ The transitive closure of PO and SW forms HB
▪ HB consistency: When reading a variable, we see either the last write (in HB) or any other unordered

write.
▪ This means races are allowed!

37

JMM: Synchronizes-With (SW) / Happens-Before (HB) orders

Problem: How do we implement locks?
● For two threads: Dekker‘s Algorithm, Peterson Lock
● For n threads: Filter Lock, Bakery Lock

Why do we need locks again?
Critical Sections

spcl.inf.ethz.ch
@spcl_eth

Pieces of code with the following conditions
1. Mutual exclusion: statements from critical sections of two or more processes must not be interleaved
2. Freedom from deadlock: if some processes are trying to enter a critical section then one of them must

eventually succeed
3. Freedom from starvation: if any process tries to enter its critical section, then that process must

eventually succeed

Critical sections

According to M. Ben Ari, Principles of Concurrent and Distributed Programming 7

spcl.inf.ethz.ch
@spcl_eth

Process P
local variables
loop

non-critical section
preprotocol
critical section
postprotocol

Critical section problem

Process Q
local variables
loop

non-critical section
preprotocol
critical section
postprotocol

global (shared) variables

8

spcl.inf.ethz.ch
@spcl_eth

Process P
local variables
loop
p1 non-critical section
p2 while(wantq);
p3 wantp = true
p4 critical section
p5 wantp = false

Mutual exclusion for 2 processes -- 1st Try

Process Q
local variables
loop
q1 non-critical section
q2 while(wantp);
q3 wantq = true
q4 critical section
q5 wantq = false

volatile boolean wantp=false, wantq=false

10

State Space Diagram

36

• When dealing with mutual exclusion problems, we should focus on:
• the structure of the underlying state space, and
• the state transitions that occur

• State diagram captures the entire state space and all possible
computations (execution paths a program may take)

• A good solution will have a state space with no bad states

spcl.inf.ethz.ch
@spcl_eth

State space diagram [p, q, wantp, wantq]

p1, q1, false, false

p1, q2, false, false

p2, q1, false, false

p2, q2, false, false

p3, q1, false, false

p1, q3, false, false p2, q3, false, false p3, q3, false, false

p3, q2, false, false

p4, q1, true, false

p4, q2, true, false

p4, q3, true, false

p1, q4, false, true p2, q4, false, true p3, q4, false, true p4, q4, true, true

1 non-critical section 2 while(wantp) 3 wantp = true 4 critical section 5 wantp = false
while(wantq) wantq = true wantq = false

11

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

spcl.inf.ethz.ch
@spcl_eth

Process P
local variables
loop
p1 non-critical section
p2 wantp = true
p3 while(wantq);
p4 critical section
p5 wantp = false

Mutual exclusion for 2 processes -- 2nd Try

Process Q
local variables
loop
q1 non-critical section
q2 wantq = true
q3 while(wantp):
q4 critical section
q5 wantq = false

volatile boolean wantp=false, wantq=false

Do you see the problem?

14

spcl.inf.ethz.ch
@spcl_eth

State space diagram [p, q, wantp, wantq]

p2, q2, false, false

p2, q3, false, true p3, q3, true, true

p3, q2, true, false p5, q2, true, false

p5, q3, true, true

p2, q5, false, true p3, q5, true, true

deadlock !

15

1 non-critical section 2 wantp = true 3 while(wantp) 4 critical section 5 wantp = false
wantq = true while(wantq) wantq = false

spcl.inf.ethz.ch
@spcl_eth

Process P
local variables
loop
p1 non-critical section
p2 while(turn != 1);
p3 critical section
p4 turn = 2

Mutual exclusion for 2 processes -- 3rd Try

Process Q
local variables
loop
q1 non-critical section
q2 while(turn != 2);
q3 critical section
q4 turn = 1

volatile int turn = 1;

16

Do you see the problem?

spcl.inf.ethz.ch
@spcl_eth

State space diagram [p, q, turn]

p2, q2, 1

p2, q2, 2

p4, q2, 1

p2, q4, 2

starvation!

We have not made any
assumptions about progress

outside of the CS...

17

Practice seeing deadlocks, etc.

• https://deadlockempire.github.io/

https://deadlockempire.github.io/

Correctness of Mutual exclusion

43

• “Statements from the critical sections of two or more processes must
not be interleaved.”

• We can see that there is no state in which the program counters of
both P and Q point to statements in their critical sections

Freedom from deadlock

44

• “If some processes are trying to enter their critical sections then one
of them must eventually succeed.”

• We don’t have a situation when the processes aren’t making any
progress anymore

Freedom from deadlock

45

• Since the behaviour of processes P and Q is symmetrical, we only
have to check what happens for one of the processes, say P.

• Freedom from deadlock means that from any state where a process
wishes to enter its CS (by awaiting its turn), there is always a path
(sequence of transitions) leading to it entering its CS.

Freedom from deadlock

46

• Typically, a deadlocked state has no transitions leading from it, i.e.
no statement is able to be executed.

• Sometimes a cycle of transitions may exist from a state for each
process, from which no useful progress in the parallel program can
be made. We call this a Livelock. Everyone is ‘busy doing nothing’.

Freedom from individual starvation

47

• “If any process tries to enter its critical section then that process
must eventually succeed.”

• If a process is wishing to enter its CS (awaiting its turn) and another
process refuses to set the turn, the first process is said to be starved.

• Possible starvation reveals itself as cycles in the state diagram.

• Because the definition of the critical section problem allows for a
process to not make progress from its Non-critical section,
starvation is, in general, possible in this example

Dekker‘s Algorithm (combination of try 2 and 3)

Peterson Lock

Filter Lock

Bakery Lock

Atomic Registers

Atomic Registers

Atomic Registers

Atomic operations

• An atomic action is one that effectively happens at once i.e. this action
cannot stop in the middle nor be interleaved

• It either happens completely, or it doesn’t happen at all.

• No side effects of an atomic action are visible until the action is complete

This essentially means that other Threads think that the change happened in
an instant

55

Hardware support for atomic operations
• Test-And-Set (TAS)

• Compare-And-Swap (CAS)

56

TAS and CAS

boolean TAS(memref s)

if (mem[s] == 0) {
mem[s] = 1;
return true;

} else

return false;

int CAS (memref a, int old, int new)

oldval = mem[a];

if (old == oldval)

mem[a] = new;

return oldval;

57

at
om

ic

at
om

ic

Lets build a spinlock using RMW operations

In Java…

TAS Spinlock scales horribly, why?

Cache Coherency Protocol L

We have a sequential bottleneck!

Each call to getAndSet() invalidates cached copies! => Threads need to
access memory via Bus => Bus Contention!

“[...] the getAndSet() call forces other processors to discard their own
cached copies of the lock, so every spinning thread encounters a cache
miss almost every time, and must use the bus to fetch the new, but
unchanged value.” - The Art of Multiprocessor Programming

Lets try spinning on local cache

It only helped a little bit

What we learned

• (too) many threads fight for access to the same resource
• slows down progress globally and locally
• CAS/TAS: Processor assumes we modify the value even if we fail!

Solution? Exponential Backoff
Idea: Each time TAS fails, wait longer until you re-try

• Backoff must be random!

Exponential backoff

Nice!

Semaphores
and Barriers

Semaphores

• Locks provide means to enforce atomicity via mutual exclusion
• They lack the means for threads to communicate about changes
• We need something stronger to coordinate threads (e.g. to

implement rendezvous)

S = new Semaphore(n) - create a new semaphore with n permits

Semaphores

Building a lock with Semaphores

Semaphores aren’t Locks!

• We can build Locks with Semaphores
• Some key differences:

• More than one Thread can be in critical section!

• How many depends on the number of permits

• Threads can release() a Semaphore without acquiring before!

• The is no notion of “holding” a Semaphore as we have with ”holding”
Locks

Rendezvous with Semaphores

• Two processes P and Q execute code
• Rendezvouz: locations in code, where P and Q wait for the other to

arrive. Synchronize P and Q.

First attempt, whats wrong?

Deadlock :(

We are never able to release! Both P and Q wait endlessly for each
other L

Attempt two, better?

Yes, that works!

Yes, that works!

Many context
switches

Lets do better!

Order does no longer matter

How about more than two threads? Barriers!

How about more than two threads? Barriers!

First attempt

Wrong

How about this?

Reusable Barrier

Reusable Barrier

Scheduling Scenario

Reusable Barrier 2nd try

Doesn’t quite work yet

Solution: Two-Phase Barrier

Exercise 8

Assignment 8: Overview

- Why do we need a memory model?

- Why don’t we simply tell the compiler “execute everything
exactly as I wrote it”?

- How can we use Javas memory model to reason about
executions?

Kahoot

