Parallel Programming
Exercise Session 7

Spring 2025

Schedule

Post-Discussion Ex. 6

Theory Recap

Pre-Discussion Ex. 7

Kahoot

(For group 9: hard wait/notify exam task)

Theory that you have not yet seen in the lectures

Evaluation

Please fill in the evaluation
(~5min)

It is anonymous
(you don’t need to be logged in)

It helps us improving the exercise
sessions

Post-Discussion
Exercise 6

Merge Sort

Discussion of solution

Longest Sequence

Given a sequence of numbers:

[1l 9) 4) 3) 3) 8) 7) 7) 7’ O]

find the longest sequence of the same consecutive number

Longest Sequence

public class LongestSequenceMulti extends RecursiveTask<Sequence> {

protected Sequence compute() {

if (// work is small) .
// do the work directly <—— Outline almost as before, except:

else {
// split work into pieces

[1,2]3,3)4,1]

// invoke the pieces and wait for the results [1, 2§ 3] [3,14, 1]

// check that result is not in between the pieces

// return the longest result

Longest Sequence

Discussion of solution

Theory Recap

Thread Safe Counter

public class Counter {
private int value;
// returns a unique value

public int getNext() {
return value++;

}
}

How to implement a thread safe Counter?

Thread Safe Counter

public class SyncCounter {
private int value;

public synchronized int getNext() {
return value++;

}
}

public class AtomicCounter {
private AtomicInteger value;

public int getNext() {
return value.incrementAndGet();
}
}

essentials

public class LockCounter {
private int value;
private Lock = new ReentrantLock();

public int getNext() {
lock.lock();
try {
return value++;
} finally {
lock.unlock()
}
}
}

How to implement a thread safe Counter?

Thread Safe Counter

public class SyncCounter {
private int value;

public synchronized int getNext() {
return value++;

}
}

public class AtomicCounter {
private AtomicInteger value;

public int getNext() {
return value.incrementAndGet();
}
}

essentials

public class LockCounter {
private int value;
private Lock = new ReentrantLock();

public int getNext() {
lock.lock();
try {
return value++;
} finally {
lock.unlock()
}
}
}

What is the difference between
synchronized and a Lock?

essentials

Java: The synchronized keyword

Synchronization is built around an internal entity
known as the intrinsic lock or monitor lock

Every intrinsic lock has an object (or class) associated with it

A thread that needs exclusive access to an object’s field has to acquire
the object’s intrinsic lock before accessing them

essentials

java.util.concurrent.Lock Interface

More low-level primitive than synchronized.

Clients need to implement:
lock(): Acquires the lock, blocks until it is acquired
trylock(): Acquire lock only if its lock is free when function is called
unlock(): Release the lock

Allows more flexible structuring than synchronized blocks

What does it mean to be more flexible?
Why is this useful?

Lock Flexibility

Synchronized forces all lock acquisition and release
to occurin a block-structured way

synchronized (A) { A.lock();
synchronized (B) { | B.lock();
} B.unlock();
} A.unlock();

essentials

The following lock order cannot
be expressed using synchronized blocks

A.lock();
B.lock();
A.unlock();
B.unlock();

As we will see later in the course, such order is useful
for implementing concurred data structures and referred
to as “hand-over-hand” locking (or “chain-locking”)

essentials

Lock Flexibility

Consider a list of locks that you should acquire

public int getNext(List<Lock> locks) {
// acquire all locks
// critical section

// release all locks

Can this be achieved using synchronized?

essentials

Lock Flexibility

Is the Lock acquired?

lock.isLocked()

Is the Lock acquired by current thread?

lock.isHeldByCurrentThread()

Try acquire the Lock without blocking

lock.tryLock()

https://docs.oracle.com/en/javal/javase/21/docs/api/java.base/java/util/concurrent/locks/ReentrantLock.html

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/locks/ReentrantLock.html

detalls

Implementing Classes of java.util.concurrent.Lock

ReentrantLock
ReentrantReadWriteLock.ReadLock
ReentrantReadWriteLock.WriteLock

Readers/Writers Lock will be covered
in detail in 3 weeks

https://docs.oracle.com/en/javal/javase/21/docs/api/java.base/java/util/concurrent/locks/Lock. html

Conclusion: Synchronized vs. External Locks

Synchronized

Acquire / release

Automatic (start / end of the synchronized block)

Scope

Inside the synchronized block

Reentrant

Yes

External locks

Acquire / release

lockobject.lock(), lockobject.unlock()

Scope

From .lock() to .unlock()

Reentrant

Only if you use ReentrantLock class

More flexible compared to synchronized

essentials

Basic Synchronization Rules

Access to shared and mutable state needs to be always protected!

essentials

Synchronization Issues

Data Race: A program has a data race if, during any possible execution,
a memory location could be written from one thread, while
concurrently being read or written from another thread.

Deadlock: Circular waiting/blocking (no instructions are executed and
CPU time may be used) between threads, so that the system (union
of all threads) cannot make any progress anymore.

Locks ﬂ Resource

A

Deadlock

Waits Resource ﬂ I.ﬂ[:ks
B

Deadlock vs Livelock

Deadlock: Circular waiting/blocking (no instructions are executed and CPU time may be
used) between threads, so that the system (union of all threads) cannot make any
progress anymore.

Livelock: Livelocks are similar to deadlocks, but in a livelock, the threads are not blocked
(they are still executing and consuming resources). However, they are unable to make
progress towards completing their tasks due to their interactions with each other. (all of
them change state but no one makes it into CS)

Quiz: What is wrong with this code?

void exchangeSecret(Person a, Person b) {
a.getlLock().lock();
b 'getLOCk() .]-OCk() 5 public class Person {

private ReentrantLock mLock = new ReentrantLock();
private String mName;

Secret s = a.getSecret();

b.setSecret(s);

public ReentrantLock getLock() {
a.getLock().unlock(); return mLock;

}
b.getLock().unlock()

essentials

Quiz: What is wrong with this code?

void exchangeSecret(Person a, Person b) {

a.getlLock().lock();
b.getlLock().lock();
Secret s = a.getSecret();
b.setSecret(s);
a.getlLock().unlock();
b.getLock().unlock()

Th d1:
rea Deadlock

exchangeSecret(pl, p2)

public class Person {

private ReentrantLock mLock = new ReentrantLock();
private String mName;

public ReentrantlLock getLock() {
return mLock;
¥
}
Thread 2:
exchangeSecret(p2, pl)

essentials

Possible solution

void exchangeSecret(Person a, Person b) {
ReentrantLock first, second;
if (a.getName().compareTo(b.getName()) < @) {
first = a.getlock(); second = b.getLock();
} else if (a.getName().compareTo(b.getName()) > 0) {
first = b.getlLock(); second = a.getlLock();
} else { throw new UnsupportedOperationException(); }
first.lock();
second.lock();
Secret s = a.getSecret();
b.setSecret(s);
first.unlock();
second.unlock();

Always acquire and release the Locks in the same order

detalls

Deadlocks and Race conditions

Not easy to spot

Hard to debug

=> Might happen only very rarely
=> Testing usually not good enough

Reasoning about code is required
Lesson learned: Need to be careful when programming with locks

Pre-Discussion
Exercise 7/

Exercise 7

Banking System

- Multi-Threaded Implementation

- Coding exercise: Use synchronized and/or Locks

- Might have to make additions to existing classes
— Reason about Performance

— Reason about Deadlocks

— Run Tests

Multi-threaded Implementation

Task 1 — Problem Identification:

The methods of the classes Account and BankingSystem must be
thread-safe.

You should understand why the current implementation does not work
for more than one thread.

essentials

Thread-Safe — transferMoney()

Task 2 — Synchronized:

A simple solution to make the transferMoney() thread-safe is to use the
synchronized keyword:
public synchronized boolean transferMoney(...)

Even though the code works as expected, the performance is poor.

The performance of the multi-threaded implementation is worse than the
single-threaded. Why does this happen?

essentials

Performance of transferMoney()

Task 3 — Locking:

Since the solution with the synchronized keyword does not perform
well, you should find a better strategy to achieve the thread-safe
implementation.

. Does your proposed solution work if a transaction happens from and to
the same account?

. How do you know that your proposed solution does not suffer from
deadlocks?

essentials

ThreadSafe - sumAccounts()

Task 4 — Summing Up

With a fine-grained synchronization on the transfer method, the
method sumAccounts() may return incorrect results when a
transaction takes place at the same time.

. Explain why the current implementation of the sumAccounts() method
is not thread-safe any more.

. You should provide a thread-safe implementation.
. Is there any way to parallelize this method?

Testing

You should run the provided tests for your implementation.
If the test succeeds, your code is not necessarily correct.

It is hard to reproduce a bad interleaving.

essentials

Old Exam Task (FS 2023)

5. (a) Erkldren Sie den Begriff “Deadlock” im Kon- Explain the term "deadlock” in the con- (2)
text von gegenseitigem Ausschluss mehrerer text of mutual exclusion in a multi-
Threads. threaded environment.

(b) Was ist der Unterschied zwischen einem What is the difference between a dead- (2)
“Deadlock” und einem “Livelock”? lock and a livelock?

35

essentials

Old Exam Task (FS 2023)

5. (a) Erkldren Sie den Begriff “Deadlock” im Kon- Explain the term "deadlock” in the con- (2)
text von gegenseitigem Ausschluss mehrerer text of mutual exclusion in a multi-
Threads. threaded environment.

Solution: A deadlock occurs when no progress can happen in a multi-threaded envi-
ronment because threads wait for each other’s actions.

For mentioning no change in state or the idea thereof with other words (1pt). For
mentioning the idea of waiting on each other/circular wait (1pt). If an example is
provided but no definition is given (1 pt).

(b) Was ist der Unterschied zwischen einem What is the difference between a dead- (2)
“Deadlock” und einem “Livelock”? lock and a livelock?

Solution: In a deadlock the state of the system does not change. In a livelock, the
state of the system changes continuously but without progress being made. (1+1pts)

36

Wait/notify exam task

A

E2
X0

Y /-

X1

Wir betrachten 3-Wege-Kreisel (siehe Abbil-
dung la). Der Kreisverkehr kann in 3 Zonen un-
terteilt werden: Z0, Z1 und Z2. Die Einfahrten
in den Kreisverkehr sind mit EQ, E1 und E2 ge-
kennzeichnet. Die Ausfahrten sind mit X0, X1
und X2 gekennzeichnet.

Beispiel: Ein an E0 ankommendes Auto, wel-
ches den Kreisel bei Ausfahrt X2 verlassen will,
muss zunichst anstehen, bis die zuvor an E0 an-
gekommenen Autos abgefahren sind. Das Auto
muss dann warten, bis die Zone Z0 frei ist, um
in den Kreisverkehr einfahren zu kénnen (siehe
Abbildung 1b). Vor dem Uberqueren der Zone
Z1 muss das Auto warten, bis Z1 frei ist (sie-
he Abbildung 1c). Das Auto kann dann bei X2
den Kreisel verlassen. Um Deadlocks zu ver-
meiden, diirfen sich im Kreisverkehr nie
mehr als 2 Autos gleichzeitig befinden!

22‘

lxz

E2
Z2

A

X2
71 E1
X0
X1

)z
EO

We consider 3-way roundabouts (see Fig-
ure l1a). The roundabout can be segmented
into 3 zones: Z0, Z1, and Z2. The entries
into the roundabout are labeled EO, El,
and E2. The exits are labeled X0, X1, and
X2.

Example: A car arriving at EO, intending
to leave the roundabout at exit X2, must
first wait in line until the cars that have
arrived earlier at EO have left. The car
then has to wait for zone Z0 to be free to
enter the roundabout (see Figure 1b). Be-
fore crossing zone Z1, the car has to wait
for Z1 to be free (see Figure 1c). The car
can then leave at X2. To avoid dead-
locks, no more than 2 cars can be in
the roundabout at any time!

Warum?

A

Y /-

Wir betrachten 3-Wege-Kreisel (siehe Abbil-
dung la). Der Kreisverkehr kann in 3 Zonen un-
terteilt werden: Z0, Z1 und Z2. Die Einfahrten
in den Kreisverkehr sind mit EQ, E1 und E2 ge-
kennzeichnet. Die Ausfahrten sind mit X0, X1
und X2 gekennzeichnet.

Beispiel: Ein an E0 ankommendes Auto, wel-
ches den Kreisel bei Ausfahrt X2 verlassen will,
muss zunichst anstehen, bis die zuvor an E0 an-
gekommenen Autos abgefahren sind. Das Auto
muss dann warten, bis die Zone Z0 frei ist, um
in den Kreisverkehr einfahren zu kénnen (siehe
Abbildung 1b). Vor dem Uberqueren der Zone
Z1 muss das Auto warten, bis Z1 frei ist (sie-
he Abbildung 1c). Das Auto kann dann bei X2
den Kreisel verlassen. Um Deadlocks zu ver-
meiden, diirfen sich im Kreisverkehr nie
mehr als 2 Autos gleichzeitig befinden!

E2
72
X0

) 20
X1
EO / EO EO

X2
E2
z2

A

X2
71 E1
X0
) z
X1

We consider 3-way roundabouts (see Fig-
ure l1a). The roundabout can be segmented
into 3 zones: Z0, Z1, and Z2. The entries
into the roundabout are labeled EO, El,
and E2. The exits are labeled X0, X1, and
X2.

Example: A car arriving at EO, intending
to leave the roundabout at exit X2, must
first wait in line until the cars that have
arrived earlier at EO have left. The car
then has to wait for zone Z0 to be free to
enter the roundabout (see Figure 1b). Be-
fore crossing zone Z1, the car has to wait
for Z1 to be free (see Figure 1c). The car
can then leave at X2. To avoid dead-
locks, no more than 2 cars can be in
the roundabout at any time!

Vervollstindigen Sie das Code-Skelett der
Klasse Car geméss der Beschreibung in den
Kommentaren. Thre Losung sollte notify(),
notify All(), wait(), das synchronized-
Schliisselwort und die vorhandenen Locks
und Atomic Integers verwenden, um das
Programm korrekt zu synchronisieren, aber
Sie sollen keine unnétige Synchronisation
einfithren. In dieser Aufgabe miissen Sie Ex-
ceptions nicht behandeln.

Complete the code skeleton of the class
Car according to the description in the
comments. Make sure that your so-
lution is properly synchronized by us-
ing notify(), notifyAll(), wait(), the
synchronized keyword, and the pro-
vided locks and atomic integers, where
required, but do not introduce unneces-
sary synchronization. For this task, you
do not need to handle exceptions.

public class Entry {
private int index;

private AtomicInteger next_ticket = new AtomicInteger(initialValue:@);

private AtomicInteger next_car_in_line = new AtomicInteger(initialValue:@);
Entry(int index) {

this.index = index;

}

public int get_index() {

return index;

1
I

public int get_ticket() {

return next_ticket.getAndIncrement();

}

public int get_next_car_in_line() {
return next_car_in_line.get();

1
ir

public void car_clears_entry(int car_ticket) {
int expected_ticket = get_next_car_in_line();
assert car_ticket == expected_ticket : "Cars must wait their turn.";
next_car_in_line.incrementAndGet();

class Zone {
private int index;
public final Lock mutex = new ReentrantLock();

Zone(int index) {
this.index = index:

public int get_index() {
return index:

class Car implements Runnable {

private final List<Zone> zones = new ArraylList<>();
private final Entry entry, exit;
private final int ticket_number;
private final AtomicInteger n_cars_on_roundabout;
Car(Zone[] zones, Entry entry, Entry exit, AtomicInteger n_cars_on_roundabout) {
this.entry = entry;
this.exit = exit;
this.ticket_number = entry.get_ticket();
int zone_index = this.entry.get_index();
this.n_cars_on_roundabout = n_cars_on_roundabout;
while (zone_index != this.exit.get_index()) {
this.zones.add(zones [zone_index]);
zone_index = (zone_index + 1) % zones.length;

}
@Override
public void run() {

@0verride
public void run() {
while (true

synchronized () {
if (this.ticket_number > this.entry.get_next_car_in_line()) {
} else {
break;
}
}

while (true

Zone current_zone = this.zones.get(index:9);

for (int i = 1; i < this.zones.size():; ++i
Zone zone = this.zones.get(i);

current_zone = zone;

@0verride
public void run() {
while (true

synchronized () {
if (this.ticket_number > this.entry.get_next_car_in_line()) {
} else {
break;
}
}

while (true

Zone current_zone = this.zones.get(index:9);

for (int i = 1; i < this.zones.size():; ++i
Zone zone = this.zones.get(i);

current_zone = zone;

@0verride
public void run() {
while (true

synchronized () {
if (this.ticket_number > this.entry.get_next_car_in_line()) {
} else {
break;
}
}

while (true

Zone current_zone = this.zones.get(index:9);

for (int i = 1; i < this.zones.size():; ++i
Zone zone = this.zones.get(i);

current_zone = zone;

@0verride
public void run() {
while (true

synchronized () {
if (this.ticket_number > this.entry.get_next_car_in_line()) {
} else {
break;
}
}

while (true

Zone current_zone = this.zones.get(index:9);

ent_zone.mutex.lock();

for (int i = 1; i < this.zones.size():; ++i
Zone zone = this.zones.get(i);

current_zone = zone;

@0verride
public void run() {
while (true

synchronized () {
if (this.ticket_number > this.entry.get_next_car_in_line()) {
} else {
break;
}
}

while (true

Zone current_zone = this.zones.get(index:9);

ent_zone.mutex.lock();

for (int i = 1; i < this.zones.size():; ++i
Zone zone = this.zones.get(i);

try(this.ticket_numbery);

current_zone = zone;

@0verride
public void run() {
while (true

synchronized () {
if (this.ticket_number > this.entry.get_next_car_in_line()) {
} else {
break;
}
}

while (true

Zone current_zone = this.zones.get(index:9);

ent_zone.mutex.lock();

for (int i = 1; i < this.zones.size():; ++i
Zone zone = this.zones.get(i);

zone.mutex.lock();
current_zone.mutex.unl

try(this.ticket_numbery);

current_zone = zone;

@0verride
public void run() {
while (true

synchronized () {
if (this.ticket_number > this.entry.get_next_car_in_line()) {
} else {
break;
}
}

while (true

Zone current_zone = this.zones.get(index:9);

ent_zone.mutex.lock();

for (int i = 1; i < this.zones.size():; ++i
Zone zone = this.zones.get(i);

zone.mutex.lock();
current_zone.mutex.unl

try(this.ticket_numbery);

current_zone = zone;

Not yet seen theory

What will you see soon in the lectures?

e Memory reordering and optimizations

e Orders:
Program Order, Synchronizes-with, Synchronization Order, Happens-before
State Space Diagrams
Dekker’s Algorithm, Peterson Lock, Filter Lock (generalization of Peterson
Lock), Bakery Lock

e Test-and-set (TAS), compare-and-swap (CAS), Test and Test-and-set
(TTAS), Exponential Backoff

We will take a look at

e Memory reordering and optimizations

e Orders:
Program Order, Synchronizes-with, Synchronization Order, Happens-
before

e State Space Diagrams

e Dekker‘s Algorithm, Peterson Lock, Filter Lock (generalization of
Peterson Lock), Bakery Lock

e Test-and-set (TAS), compare-and-swap (CAS), Test and Test-and-set
(TTAS), Exponential Backoff

Motivation

class C {
private int x = 0;
private int y = 0;
Thread 1
X = 1;
y = 1;
}
Thread 2

int a = y;
int b = x;
assert(b >= a);

, } G s il

Another proof

class C { There is no interleaving of £ and g causing the assertion to fail
private int x = 0;
private int y = 0;
Thread 1
X = 1;
y = 1;
Thread 2

int a = y;
int b = x;
assert(b >= a);

Another proof

class C {
private int x =
private int y
Thread 1
X = 1;
y = 1;
}
Thread 2
int a = y;
int b = x;
assert(b >= a);
}
}

I
o0

There is no interleaving of £ and g causing the assertion to fail
Another proof (by contradiction):

Assume b<a [0 a==1 and b==0.

Butif a==1 [y=1 happened before a=y.
And if b==0 [I b=x happened before x=1.

Because we assume that programs execute in order:

a=y happened before b=x
x=1 happened before y=1

So by transitivity,
a=y happened before b=x happened before x=1 happened before
y=1 happened before a=y [I Contradiction ¢

But does this really work?

NO

Because of:

Optimizations by Compiler
Optimizations by Hardware
(basically Memory Reordering)

Why it still can fail: Memory reordering

Rule of thumb: Compiler and hardware allowed to make changes that do

not affect the semantics of a sequentially executed program

void f() {
X =
y:
Z =
}

1;
X+1;
X+1;

semantically
equivalent?

X
y4

y

void f() {

1;
X+1;
X+1;

Are these semantically equivalent?

semantically
equivalent?

void f() {

X
y4

y

Example: Fail with self-made rendezvous (C / GCC)

int x;

void wait() {
X =1;
while(x==1);
}

Assembly without optimization

movl $Ox1, x

test:

mov X, %eax
cmp $0x1, %eax
je test

void arrive(){
X = 2;

movl $0x2, x

Example: Fail with self-made rendezvous (C / GCC)

int Xx;

void wait() {
X = 1;
while(x==1);

Assembly without optimization

movl $Ox1, x

test:

mov X, %eax
cmp $0x1, %eax
je test

void arrive(){
X = 2;

je: jump (only) if equal,

i.e., if cmp yields true

movl $0x2, x

Example: Fail with self-made rendezvous (C / GCC)

int x;

void wait() {
X = 1;
while(x==1);

Assembly without optimization Assembly with optimization
movl $Ox1, x mov1 $ox1, x

test: test:

mov X, %eax jmp test :::>

cmp $0x1, %eax
je test jmp: jump always

void arrive(){
X = 2;

je: jump (only) if equal,

i.e., if cmp yields true

movl $0x2, x
movl $0x2, x

Memory hierachy (one core)

fast, low latency, high cost, low capacity

slow, high latency latency, low cost, high capacity

20

Memory hierachy (many cores)

21

Why memory models, x86 example

x=y=0

Thread‘/\:hread2
x=1 y=1
j=y i=x

What could be the result?

Why memory models, x86 example

x=y=0

Thread‘/\:hreadZ
x=1 y=1
j=y i=x

What could be the result?

>
=]
7]

N v s 5 N & E
i

or opPr

S
1l

Visibility not guaranteed

And even if an action has been executed, we do not have guarantees
that other threads see them (in the correct order).

In other words, actions that were performed by one thread may not be
visible to another thread!

We want to make sure that the actions become visible. And we want
some guarantees on the ordering.

How? Java Memory Model!

Java Memory Model (JMM): Necessary basics

[0 JMM restricts allowable outcomes of programs

0 You saw that if we don’t have these operations (volatile, synchronized etc.) — outcome can be “arbitrary” (not quite
correct, say unexpected [)

[JMM defines Actions: read(x) :1 “read variable x, the value read is 1”

[Executions combine actions with ordering:
0 Program Order
0 Synchronizes-with
0 Synchronization Order
0 Happens-before

JMM: Program Order (PO)

0

Program order is a total order of intra-thread actions

0 Program statements are NOT a total order across threads!

Program order does not provide an ordering guarantee for memory accesses!

0 The only reason it exists is to provide the link between possible executions and the original program.
Intra-thread consistency: Per thread, the PO order is consistent with the thread’s isolated execution

if (x == 2) { |read(x):2| P° if (x == 2) { |read(x}:2

y = 1; write(y,1) y = 1; x
} else { } else {

z = 1; po z = 1; write(z,1)
¥ } po
ri = y; read(y):1 ri = y; read(}f):l‘

JMM: Synchronization Actions (SA) and Synchronization Order (SO)

[0 Synchronization actions are:
0 Read/write of a volatile variable
0 Lock monitor, unlock monitor
0 First/last action of a thread (synthetic)
0 Actions which start a thread
0 Actions which determine if a thread has terminated

[0 Synchronization Actions form the Synchronization Order (SO)
0 SOis atotal order
0 All threads see SA in the same order
0 SA within a thread are in PO
0 SO is consistent: all reads in SO see the last writes in SO

JMM: Synchronizes-With (SW) / Happens-Before (HB) orders

SW only pairs the specific actions which "see" each other
A volatile write to x synchronizes with subsequent read of x (subsequent in SO)
The transitive closure of PO and SW forms HB

HB consistency: When reading a variable, we see either the last write (in HB) or any other unordered
write.

0
0
0
0

0 This means races are allowed!

Happens-befare

Ways to achieve a

happens-before relationship Within a Sf”glr:;rﬂgram order Synrhmnlzes-wﬂhﬁemem
thread ' | threads

i I o I o 1 :
Ways to achieve a Mutex Thread Acquire 8 release
synchronizes-with relationship lock/unlock create/join semantics

; I = | = | i | .

Constructs which provide C++11 Acquire & release | |volatile types| | volatile types in
acquire & release semantics | atomic types fences in Java Microsoft C/C++

i I o I o 1 :
APlLs which expose C++11 Mintomic Platform-specific

acquire & release fences fences fences memary fences

Problem: How do we implement locks?

e For two threads: Dekker's Algorithm, Peterson Lock
e [or nthreads: Filter Lock, Bakery Lock

Why do we need locks again?
Critical Sections

Critical sections

Pieces of code with the following conditions
1. Mutual exclusion: statements from critical sections of two or more processes must not be interleaved

2. Freedom from deadlock: if some processes are trying to enter a critical section then one of them must
eventually succeed

3. Freedom from starvation: if any process tries to enter its critical section, then that process must
eventually succeed

According to M. Ben Ari, Principles of Concurrent and Distributed Programming

Critical section problem

global (shared) variables

Process P Process Q

local variables local variables

loop loop
non-critical section non-critical section
preprotocol preprotocol
critical section critical section

postprotocol postprotocol

Mutual exclusion for 2 processes -- 1st Try

volatile boolean wantp=false, wantg=false

Process P Process Q

local variables local variables

loop loop

p1 non-critical section q1 non-critical section
p2 while(wantq); q2 while(wantp);

p3 wantp = true q3 wantq = true

p4 critical section q4 critical section

pS wantp = false qd wantq = false

State Space Diagram

* When dealing with mutual exclusion problems, we should focus on:
* the structure of the underlying state space, and
* the state transitions that occur

e State diagram captures the entire state space and all possible
computations (execution paths a program may take)

* A good solution will have a state space with no bad states

State space diagram [p, q, wantp, wantq]

1 non-critical section 2 while(wantp) 3 wantp = true

pl, q1, false, false

v

pl, g2, false, false

v

pl, g3, false, false

b

pl, g4, false, true

while(wantq) wantq =true

ﬁ

P2, ql, false, false)

v

P2, g2, false, false e—)p

v

P2, g3, false, false —)

b

p2, q4, false, true

4 critical section

5 wantp = false

wantq = false

p3, ql, false, false)

'

p3, g2, false, false)

!

p3, q3, false, false ~ ==—p-

:

p3, q4, false, true

——

p1 non-critical section

p2 while(wantq);
p3 wantp = true
p4 critical section
p5 wantp = false

p4, q1, true, false

v

p4, g2, true, false

p4, g3, true, false

b

p4, g4, true, true

Correctness of Mutual exclusion

* “Statements from the critical sections of two or more processes must
not be interleaved.”

* We can see that there is no state in which the program counters of
both P and Q point to statements in their critical sections

78

Freedom from deadlock

* “If some processes are trying to enter their critical sections then one
of them must eventually succeed.”

 We don’t have a situation when the processes aren’t making any
progress anymore

79

Freedom from deadlock

* Since the behaviour of processes P and Q is symmetrical, we only
have to check what happens for one of the processes, say P.

* Freedom from deadlock means that from any state where a process
wishes to enter its CS (by awaiting its turn), there is always a path
(sequence of transitions) leading to it entering its CS.

80

Freedom from deadlock

* Typically, a deadlocked state has no transitions leading from it, i.e.
no statement is able to be executed.

* Sometimes a cycle of transitions may exist from a state for each

process, from which no useful progress in the parallel program can
be made. We call this a Livelock. Everyone is ‘busy doing nothing’.

81

Freedom from individual starvation

* “If any process tries to enter its critical section then that process
must eventually succeed.”

* |f a processis wishing to enter its CS (awaiting its turn) and another
process refuses to set the turn, the first process is said to be starved.

* Possible starvation reveals itself as cycles in the state diagram.
* Because the definition of the critical section problem allows for a

process to not make progress from its Non-critical section,
starvation is, in general, possible in this example

82

Dekker's Algorithm

volatile boolean wantp=false, wantg=false, integer turn=1

Process P only when g Process Q

loop tries to get loop
non-critical section lock non-critical section
wantp = true and q has wantq = true
while (wantq) { preference while (wantp) {

if (turn == 2) {
wantp = false;
while(turn !=1);
wantp = true; }}
critical section
turn=2
wantp = false

let q proceed
and wait

and try again

if (turn == 1) {
wantq = false
while(turn != 2);
wantq = true; }}
critical section
turn=1
wantq = false

Peterson Lock

let P=1, Q=2; volatile boolean array flag[1..2] = [false, false];
volatile integer victim =1

Process P (1) Process Q (2)
loop

loop
non-critical seM non-critical section

victim=P victim=Q

while(flag[Q] && victim == P); while(flag[P] && victim == Q);
critical sec
flag[P] = false

critical section
flag[Q] = false

Filter Lock

non-CS with n threads

0
int[] level(#threads), int[] victim(#threads) \\ n-1 threads //1

\ 2 threads / 2
-/

].OCk(mE) { 2 threads
for (int i=1; i<n; ++i) {
level[me] = i;
victim[i] = me; :

while (3Fk #me: level[k] >= i & & victim[i] == me) {};
}

Other threads
unlock(me) { I And | have to wait
level[me] = 0O; higher level

}

Atomic Registers

Register: basic memory object, can be shared or not
i.e., in this context register + register of a CPU

Register r : operations r.read() and r.write(v)
Atomic Register:

An invocation J of r.read or r.write takes effect at a single point 7(/) in time
7(J) always lies between start and end of the operation J

Two operations J and K on the same register always have a different effect
time7(J) # 1(K)

An invocation J of r.read() returns the value v written by the invocation K of
r.write(v) with closest preceding effect time 7(K)

Atomic Registers

r.read()
G — O —
rwrite(4) r.read()
B oo o— ®----- P - - - - = = -
rwrite(1) r.read() r.read()
C —-Oo——@--en-m- T e, S —— e

time

Atomic Registers

r.read() =1
N O —
r.write(4) rread() >4
B - @ ®o----- Pl - - - - - - -
rwrite(1) r.read() >1 r.read() 2 any value!
C ---@t@oooo- D e T —— @

time

Atomic operations

 An atomic action is one that effectively happens at once i.e. this action
cannot stop in the middle nor be interleaved

* |t either happens completely, or it doesn’t happen at all.
* No sside effects of an atomic action are visible until the action is complete

This essentially means that other Threads think that the change happened in
an instant

Hardware support for atomic operations

 Test-And-Set (TAS)

e Compare-And-Swap (CAS)

TAS and CAS

boolean TAS(memref s) int CAS (memref a, int old, int new)
if (mem[s] ==0){ oldval = mem|[a];
mem[s] = 1,
if (old == oldval)

return true;

} else mem[a] = new:

return false; return oldval:

91

Lets build a spinlock using RMW operations

Test and Set (TAS) Compare and Swap (CAS)
Init (lock) Init (lock)
lock = 0; lock = 0;
Acquire (lock) Acquire (lock)
while TAS(lock); // wait while (CAS(lock, 0, 1) !=0);
Release (lock) Release (lock)

lock = 0; CAS(lock, 1, 0);

In Java...

o000

public class TASLock implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
while(state.getAndSet(true)) {
//do nothing

public void unlock() {
state.set(false);

TAS Spinlock scales horribly, why?

TAS

n =1, elapsed= 224, normalized= 224

n = 2, elapsed= 719, normalized= 359

n = 3, elapsed= 1914, normalized= 638

n =4, elapsed= 3373, normalized= 843

n =5, elapsed= 4330, normalized= 866

n = 6, elapsed= 6075, normalized= 1012

n =7, elapsed= 8089, normalized= 1155

n =8, elapsed= 10369, normalized= 1296

n =16, elapsed=41051, normalized= 2565
n =32, elapsed= 156207, normalized= 4881
n = 64, elapsed= 619197, normalized= 9674

Cache Coherency Protocol ®

We have a sequential bottleneck!

Each call to getAndSet() invalidates cached copies! => Threads need to
access memory via Bus => Bus Contention!

“[...] the getAndSet() call forces other processors to discard their own
cached copies of the lock, so every spinning thread encounters a cache
miss almost every time, and must use the bus to fetch the new, but
unchanged value.” - The Art of Multiprocessor Programming

Lets try spinning on local cache

public class TASLock implements Lock {
AtomicBoolean state = new AtomicBoolean(false);

public void lock() {
do
while (state.get() = true) //spins on local cache
while(!state.compareAndSet(false, true)) {}

public void unlock() {
state.set(false);

It only helped a little bit

00000

TAS

TTAS

ms/ .
000
thread

number threads

What we learned

* (too) many threads fight for access to the same resource
* slows down progress globally and locally
» CAS/TAS: Processor assumes we modify the value even if we fail!

Solution? Exponential Backoff
Idea: Each time TAS fails, wait longer until you re-try

e Backoff must be random!

Exponential backoff

acquire(lock):
while True:

while lock == 1: pass

if CAS(lock, 0, 1) ==
return True

else:
backoff x= 2
sleep(backoff)

unlock(lock):
lock = @

Nice!

12000

10000

TAS

8000

TTAS
ms/ 6000
thread
| oteesess : > . BackoffLock

number threads

	Slide 1: Parallel Programming Exercise Session 7
	Slide 2: Schedule
	Slide 3: Evaluation
	Slide 4: Post-Discussion Exercise 6
	Slide 5: Merge Sort
	Slide 6: Longest Sequence
	Slide 7: Longest Sequence
	Slide 8: Longest Sequence
	Slide 9: Theory Recap
	Slide 10: Thread Safe Counter
	Slide 11: Thread Safe Counter
	Slide 12: Thread Safe Counter
	Slide 13: Java: The synchronized keyword
	Slide 14: java.util.concurrent.Lock Interface
	Slide 15: Lock Flexibility
	Slide 16: Lock Flexibility
	Slide 17: Lock Flexibility
	Slide 18: Implementing Classes of java.util.concurrent.Lock
	Slide 19: Conclusion: Synchronized vs. External Locks
	Slide 20: Basic Synchronization Rules
	Slide 21: Synchronization Issues
	Slide 22
	Slide 23: Deadlock vs Livelock
	Slide 24: Quiz: What is wrong with this code?
	Slide 25: Quiz: What is wrong with this code?
	Slide 26: Possible solution
	Slide 27: Deadlocks and Race conditions
	Slide 28: Pre-Discussion Exercise 7
	Slide 29: Exercise 7
	Slide 30: Multi-threaded Implementation
	Slide 31: Thread-Safe – transferMoney()
	Slide 32: Performance of transferMoney()
	Slide 33: ThreadSafe - sumAccounts()
	Slide 34: Testing
	Slide 35: Old Exam Task (FS 2023)
	Slide 36: Old Exam Task (FS 2023)
	Slide 37
	Slide 38: Wait/notify exam task
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Not yet seen theory
	Slide 53: What will you see soon in the lectures?
	Slide 54: We will take a look at
	Slide 55
	Slide 56
	Slide 57
	Slide 58: But does this really work?
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Visibility not guaranteed
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Problem: How do we implement locks?
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Dekker‘s Algorithm
	Slide 84: Peterson Lock
	Slide 85: Filter Lock
	Slide 86: Atomic Registers
	Slide 87: Atomic Registers
	Slide 88: Atomic Registers
	Slide 89
	Slide 90
	Slide 91
	Slide 92: Lets build a spinlock using RMW operations
	Slide 93: In Java…
	Slide 94: TAS Spinlock scales horribly, why?
	Slide 95: Cache Coherency Protocol 
	Slide 96: Lets try spinning on local cache
	Slide 97: It only helped a little bit
	Slide 98: What we learned
	Slide 99: Exponential backoff
	Slide 100: Nice!

