
Parallel Programming
Exercise Session 7
Spring 2025

Schedule

Post-Discussion Ex. 6

Theory Recap

Pre-Discussion Ex. 7

Kahoot

(For group 9: hard wait/notify exam task)

Theory that you have not yet seen in the lectures

Evaluation

Please fill in the evaluation
(~5min)

It is anonymous

(you don’t need to be logged in)

It helps us improving the exercise
sessions

Post-Discussion
Exercise 6

4

Merge Sort

Discussion of solution

Longest Sequence

Given a sequence of numbers:

[1, 9, 4, 3, 3, 8, 7, 7, 7, 0]

find the longest sequence of the same consecutive number

Longest Sequence

public class LongestSequenceMulti extends RecursiveTask<Sequence> {

protected Sequence compute() {
if (// work is small)

// do the work directly

else {
// split work into pieces

// invoke the pieces and wait for the results

// check that result is not in between the pieces

// return the longest result
}

}
}

Outline almost as before, except:

[1, 2, 3, 3, 4, 1]

[1, 2, 3] [3, 4, 1]

Longest Sequence

Discussion of solution

Theory Recap

public class Counter {
private int value;
// returns a unique value

public int getNext() {
return value++;

}
}

How to implement a thread safe Counter?

Thread Safe Counter

Thread Safe Counter

public class AtomicCounter {
private AtomicInteger value;

public int getNext() {
return value.incrementAndGet();

}
}

public class SyncCounter {
private int value;

public synchronized int getNext() {
return value++;

}
}

public class LockCounter {
private int value;
private Lock = new ReentrantLock();

public int getNext() {
lock.lock();
try {

return value++;
} finally {

lock.unlock()
}

}
}

How to implement a thread safe Counter?

essentials

Thread Safe Counter

public class AtomicCounter {
private AtomicInteger value;

public int getNext() {
return value.incrementAndGet();

}
}

public class SyncCounter {
private int value;

public synchronized int getNext() {
return value++;

}
}

public class LockCounter {
private int value;
private Lock = new ReentrantLock();

public int getNext() {
lock.lock();
try {

return value++;
} finally {

lock.unlock()
}

}
}

What is the difference between
synchronized and a Lock?

essentials

Java: The synchronized keyword

Synchronization is built around an internal entity
known as the intrinsic lock or monitor lock

Every intrinsic lock has an object (or class) associated with it

A thread that needs exclusive access to an object’s field has to acquire
the object’s intrinsic lock before accessing them

essentials

java.util.concurrent.Lock Interface
More low-level primitive than synchronized.

Clients need to implement:
lock(): Acquires the lock, blocks until it is acquired
trylock(): Acquire lock only if its lock is free when function is called
unlock(): Release the lock

Allows more flexible structuring than synchronized blocks

What does it mean to be more flexible?
Why is this useful?

essentials

Lock Flexibility

A.lock();
B.lock();
B.unlock();
A.unlock();

synchronized (A) {
synchronized (B) {
}

}

Synchronized forces all lock acquisition and release
to occur in a block-structured way

A.lock();
B.lock();
A.unlock();

B.unlock();

The following lock order cannot
be expressed using synchronized blocks

As we will see later in the course, such order is useful
for implementing concurred data structures and referred

to as “hand-over-hand” locking (or “chain-locking”)

essentials

Lock Flexibility

Consider a list of locks that you should acquire

public int getNext(List<Lock> locks) {

// acquire all locks

// critical section

// release all locks

}

Can this be achieved using synchronized?

essentials

Lock Flexibility
Is the Lock acquired?

Is the Lock acquired by current thread?

Try acquire the Lock without blocking

lock.isLocked()

lock.isHeldByCurrentThread()

lock.tryLock()

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/locks/ReentrantLock.html

essentials

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/locks/ReentrantLock.html

Implementing Classes of java.util.concurrent.Lock

ReentrantLock
ReentrantReadWriteLock.ReadLock
ReentrantReadWriteLock.WriteLock

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/concurrent/locks/Lock.html

Readers/Writers Lock will be covered
in detail in 3 weeks

details

Conclusion: Synchronized vs. External Locks

Synchronized

Acquire / release

Automatic (start / end of the synchronized block)

Scope

Inside the synchronized block

Reentrant

Yes

External locks

Acquire / release

lockobject.lock(), lockobject.unlock()

Scope

From .lock() to .unlock()

Reentrant

Only if you use ReentrantLock class

More flexible compared to synchronized

Basic Synchronization Rules

Access to shared and mutable state needs to be always protected!

essentials

Synchronization Issues

Data Race: A program has a data race if, during any possible execution,
a memory location could be written from one thread, while
concurrently being read or written from another thread.

Deadlock: Circular waiting/blocking (no instructions are executed and
CPU time may be used) between threads, so that the system (union
of all threads) cannot make any progress anymore.

essentials

Deadlock vs Livelock

Deadlock: Circular waiting/blocking (no instructions are executed and CPU time may be

used) between threads, so that the system (union of all threads) cannot make any

progress anymore.

Livelock: Livelocks are similar to deadlocks, but in a livelock, the threads are not blocked

(they are still executing and consuming resources). However, they are unable to make

progress towards completing their tasks due to their interactions with each other. (all of

them change state but no one makes it into CS)

Quiz: What is wrong with this code?

void exchangeSecret(Person a, Person b) {

a.getLock().lock();

b.getLock().lock();

Secret s = a.getSecret();

b.setSecret(s);

a.getLock().unlock();

b.getLock().unlock()

}

public class Person {

private ReentrantLock mLock = new ReentrantLock();

private String mName;

public ReentrantLock getLock() {

return mLock;

}

...

}

Quiz: What is wrong with this code?

void exchangeSecret(Person a, Person b) {

a.getLock().lock();

b.getLock().lock();

Secret s = a.getSecret();

b.setSecret(s);

a.getLock().unlock();

b.getLock().unlock()

}

public class Person {

private ReentrantLock mLock = new ReentrantLock();

private String mName;

public ReentrantLock getLock() {

return mLock;

}

...

}

Thread 1:

exchangeSecret(p1, p2)

Thread 2:

exchangeSecret(p2, p1)
Deadlock

essentials

Possible solution
void exchangeSecret(Person a, Person b) {

ReentrantLock first, second;

if (a.getName().compareTo(b.getName()) < 0) {

first = a.getLock(); second = b.getLock();

} else if (a.getName().compareTo(b.getName()) > 0) {

first = b.getLock(); second = a.getLock();

} else { throw new UnsupportedOperationException(); }

first.lock();

second.lock();

Secret s = a.getSecret();

b.setSecret(s);

first.unlock();

second.unlock();

}

Always acquire and release the Locks in the same order

essentials

Deadlocks and Race conditions

Not easy to spot

Hard to debug

➔ Might happen only very rarely
➔ Testing usually not good enough

Reasoning about code is required

Lesson learned: Need to be careful when programming with locks

details

Pre-Discussion
Exercise 7

Exercise 7

Banking System

– Multi-Threaded Implementation

– Coding exercise: Use synchronized and/or Locks

− Might have to make additions to existing classes

– Reason about Performance

– Reason about Deadlocks

– Run Tests

Multi-threaded Implementation

Task 1 – Problem Identification:

The methods of the classes Account and BankingSystem must be
thread-safe.

You should understand why the current implementation does not work
for more than one thread.

Thread-Safe – transferMoney()

Task 2 – Synchronized:

A simple solution to make the transferMoney() thread-safe is to use the
synchronized keyword:
public synchronized boolean transferMoney(…)

Even though the code works as expected, the performance is poor.

The performance of the multi-threaded implementation is worse than the
single-threaded. Why does this happen?

essentials

Performance of transferMoney()

Task 3 – Locking:

Since the solution with the synchronized keyword does not perform
well, you should find a better strategy to achieve the thread-safe
implementation.

● Does your proposed solution work if a transaction happens from and to
the same account?

● How do you know that your proposed solution does not suffer from
deadlocks?

essentials

ThreadSafe - sumAccounts()

Task 4 – Summing Up

With a fine-grained synchronization on the transfer method, the
method sumAccounts() may return incorrect results when a
transaction takes place at the same time.

● Explain why the current implementation of the sumAccounts() method
is not thread-safe any more.

● You should provide a thread-safe implementation.

● Is there any way to parallelize this method?

essentials

Testing

You should run the provided tests for your implementation.

If the test succeeds, your code is not necessarily correct.

It is hard to reproduce a bad interleaving.

Old Exam Task (FS 2023)

35

essentials

Old Exam Task (FS 2023)

36

essentials

Wait/notify exam task

Warum?

this.entry

entry.wait();

this.entry

entry.wait();

int t = n_cars_on_roundabout.get();

if (t < 2 && n_cars_on_roundabout.compareAndSet(t, t + 1)) break;

this.entry

entry.wait();

int t = n_cars_on_roundabout.get();

if (t < 2 && n_cars_on_roundabout.compareAndSet(t, t + 1)) break;

current_zone.mutex.lock();

this.entry

entry.wait();

int t = n_cars_on_roundabout.get();

if (t < 2 && n_cars_on_roundabout.compareAndSet(t, t + 1)) break;

current_zone.mutex.lock();

synchronize(entry){

entry.car_clears_entry(this.ticket_number);
entry.notifyAll();

}

this.entry

entry.wait();

int t = n_cars_on_roundabout.get();

if (t < 2 && n_cars_on_roundabout.compareAndSet(t, t + 1)) break;

current_zone.mutex.lock();

synchronize(entry){

entry.car_clears_entry(this.ticket_number);
entry.notifyAll();

}

zone.mutex.lock();
current_zone.mutex.unlock();

this.entry

entry.wait();

int t = n_cars_on_roundabout.get();

if (t < 2 && n_cars_on_roundabout.compareAndSet(t, t + 1)) break;

current_zone.mutex.lock();

synchronize(entry){

entry.car_clears_entry(this.ticket_number);
entry.notifyAll();

}

zone.mutex.lock();
current_zone.mutex.unlock();

current_zone.mutex.unlock();
n_cars_on_roundabout.decrementAndGet();

Not yet seen theory

What will you see soon in the lectures?

● Memory reordering and optimizations

● Orders:

Program Order, Synchronizes-with, Synchronization Order, Happens-before

● State Space Diagrams

● Dekker‘s Algorithm, Peterson Lock, Filter Lock (generalization of Peterson

Lock), Bakery Lock

● Test-and-set (TAS), compare-and-swap (CAS), Test and Test-and-set

(TTAS), Exponential Backoff

We will take a look at

● Memory reordering and optimizations

● Orders:

Program Order, Synchronizes-with, Synchronization Order, Happens-

before

● State Space Diagrams

● Dekker‘s Algorithm, Peterson Lock, Filter Lock (generalization of

Peterson Lock), Bakery Lock

● Test-and-set (TAS), compare-and-swap (CAS), Test and Test-and-set

(TTAS), Exponential Backoff

spcl.inf.ethz.ch

@spcl_eth

class C {
 private int x = 0;
 private int y = 0;
 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

Motivation

Can this fail?

11

Thread 1

Thread 2

spcl.inf.ethz.ch

@spcl_eth

There is no interleaving of f and g causing the assertion to fail

Another proof

13

class C {
 private int x = 0;
 private int y = 0;
 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

Thread 1

Thread 2

spcl.inf.ethz.ch

@spcl_eth

There is no interleaving of f and g causing the assertion to fail

Another proof (by contradiction):

Assume b<a ⇒ a==1 and b==0.

But if a==1 ⇒ y=1 happened before a=y.
And if b==0 ⇒ b=x happened before x=1.

Because we assume that programs execute in order:

a=y happened before b=x
x=1 happened before y=1

So by transitivity,
a=y happened before b=x happened before x=1 happened before
y=1 happened before a=y ⇒ Contradiction

Another proof

13

class C {
 private int x = 0;
 private int y = 0;
 void f() {
 x = 1;
 y = 1;
 }
 void g() {
 int a = y;
 int b = x;
 assert(b >= a);
 }
}

Thread 1

Thread 2

But does this really work?

No

Because of:

Optimizations by Compiler

Optimizations by Hardware

(basically Memory Reordering)

spcl.inf.ethz.ch

@spcl_eth

void f() {

x = 1;

y = x+1;

z = x+1;

}

Why it still can fail: Memory reordering

void f() {

x = 1;

z = x+1;

y = x+1;

}

Rule of thumb: Compiler and hardware allowed to make changes that do
not affect the semantics of a sequentially executed program

semantically

equivalent?

15

void f() {

x = 1;

z = 2;

y = 2;

}

semantically

equivalent?

Are these semantically equivalent?

spcl.inf.ethz.ch

@spcl_eth

int x;

void wait() {

x = 1;

while(x==1);

}

void arrive(){

x = 2;

}

Example: Fail with self-made rendezvous (C / GCC)

Assembly without optimization

movl $0x1, x

test:

mov x, %eax

cmp $0x1, %eax

je test

movl $0x2, x

18

spcl.inf.ethz.ch

@spcl_eth

int x;

void wait() {

x = 1;

while(x==1);

}

void arrive(){

x = 2;

}

Example: Fail with self-made rendezvous (C / GCC)

Assembly without optimization

movl $0x1, x

test:

mov x, %eax

cmp $0x1, %eax

je test

movl $0x2, x

Assembly with optimization

movl $0x1, x

test:

jmp test

movl $0x2, x

je: jump (only) if equal,
i.e., if cmp yields true

jmp: jump always

18

spcl.inf.ethz.ch

@spcl_eth

int x;

void wait() {

x = 1;

while(x==1);

}

void arrive(){

x = 2;

}

Example: Fail with self-made rendezvous (C / GCC)

Assembly without optimization

movl $0x1, x

test:

mov x, %eax

cmp $0x1, %eax

je test

movl $0x2, x

Assembly with optimization

movl $0x1, x

test:

jmp test

movl $0x2, x

je: jump (only) if equal,
i.e., if cmp yields true

jmp: jump always

18

spcl.inf.ethz.ch

@spcl_eth

Memory hierachy (one core)

Registers

L1 Cache

L2 Cache

System Memory

fast, low latency, high cost, low capacity

slow, high latency latency, low cost, high capacity

20

ALUs

0.5ns

1 ns

7 ns

100 ns

spcl.inf.ethz.ch

@spcl_eth

Memory hierachy (many cores)

Registers

L1 Cache

Shared L2 Cache

System Memory

21

Registers

L1 Cache

Registers

L1 Cache

…

ALUs ALUs ALUs

spcl.inf.ethz.ch

@spcl_eth

31

Why memory models, x86 example

Answer:

i=1, j=1

i=0, j=1

i=1, j=0

i=0, j=0 (but why?)

spcl.inf.ethz.ch

@spcl_eth

31

Why memory models, x86 example

Answer:

i=1, j=1

i=0, j=1

i=1, j=0

i=0, j=0 (but why?)

Visibility not guaranteed

And even if an action has been executed, we do not have guarantees
that other threads see them (in the correct order).

In other words, actions that were performed by one thread may not be
visible to another thread!

We want to make sure that the actions become visible. And we want
some guarantees on the ordering.

How? Java Memory Model!

spcl.inf.ethz.ch

@spcl_eth

⇒ JMM restricts allowable outcomes of programs

⇒ You saw that if we don’t have these operations (volatile, synchronized etc.) – outcome can be “arbitrary” (not quite
correct, say unexpected ⇒)

⇒ JMM defines Actions: read(x):1 “read variable x, the value read is 1”

⇒ Executions combine actions with ordering:

⇒ Program Order

⇒ Synchronizes-with

⇒ Synchronization Order

⇒ Happens-before

33

Java Memory Model (JMM): Necessary basics

spcl.inf.ethz.ch

@spcl_eth

⇒ Program order is a total order of intra-thread actions

⇒ Program statements are NOT a total order across threads!

⇒ Program order does not provide an ordering guarantee for memory accesses!

⇒ The only reason it exists is to provide the link between possible executions and the original program.

⇒ Intra-thread consistency: Per thread, the PO order is consistent with the thread’s isolated execution

34

JMM: Program Order (PO)

spcl.inf.ethz.ch

@spcl_eth

⇒ Synchronization actions are:

⇒ Read/write of a volatile variable

⇒ Lock monitor, unlock monitor

⇒ First/last action of a thread (synthetic)

⇒ Actions which start a thread

⇒ Actions which determine if a thread has terminated

⇒ Synchronization Actions form the Synchronization Order (SO)

⇒ SO is a total order

⇒ All threads see SA in the same order

⇒ SA within a thread are in PO

⇒ SO is consistent: all reads in SO see the last writes in SO

35

JMM: Synchronization Actions (SA) and Synchronization Order (SO)

spcl.inf.ethz.ch

@spcl_eth

⇒ SW only pairs the specific actions which "see" each other

⇒ A volatile write to x synchronizes with subsequent read of x (subsequent in SO)

⇒ The transitive closure of PO and SW forms HB

⇒ HB consistency: When reading a variable, we see either the last write (in HB) or any other unordered
write.

⇒ This means races are allowed!

37

JMM: Synchronizes-With (SW) / Happens-Before (HB) orders

Problem: How do we implement locks?

● For two threads: Dekker‘s Algorithm, Peterson Lock

● For n threads: Filter Lock, Bakery Lock

Why do we need locks again?

Critical Sections

spcl.inf.ethz.ch

@spcl_eth

Pieces of code with the following conditions

1. Mutual exclusion: statements from critical sections of two or more processes must not be interleaved

2. Freedom from deadlock: if some processes are trying to enter a critical section then one of them must
eventually succeed

3. Freedom from starvation: if any process tries to enter its critical section, then that process must
eventually succeed

Critical sections

According to M. Ben Ari, Principles of Concurrent and Distributed Programming 7

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

non-critical section

preprotocol

critical section

postprotocol

Critical section problem

Process Q

local variables

loop

non-critical section

preprotocol

critical section

postprotocol

global (shared) variables

8

spcl.inf.ethz.ch

@spcl_eth

Process P

local variables

loop

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

Mutual exclusion for 2 processes -- 1st Try

Process Q

local variables

loop

q1 non-critical section

q2 while(wantp);

q3 wantq = true

q4 critical section

q5 wantq = false

volatile boolean wantp=false, wantq=false

10

State Space Diagram

76

• When dealing with mutual exclusion problems, we should focus on:
• the structure of the underlying state space, and
• the state transitions that occur

• State diagram captures the entire state space and all possible
computations (execution paths a program may take)

• A good solution will have a state space with no bad states

spcl.inf.ethz.ch

@spcl_eth

State space diagram [p, q, wantp, wantq]

p1, q1, false, false

p1, q2, false, false

p2, q1, false, false

p2, q2, false, false

p3, q1, false, false

p1, q3, false, false p2, q3, false, false p3, q3, false, false

p3, q2, false, false

p4, q1, true, false

p4, q2, true, false

p4, q3, true, false

p1, q4, false, true p2, q4, false, true p3, q4, false, true p4, q4, true, true

1 non-critical section 2 while(wantp) 3 wantp = true 4 critical section 5 wantp = false
while(wantq) wantq = true wantq = false

11

p1 non-critical section

p2 while(wantq);

p3 wantp = true

p4 critical section

p5 wantp = false

Correctness of Mutual exclusion

78

• “Statements from the critical sections of two or more processes must
not be interleaved.”

• We can see that there is no state in which the program counters of
both P and Q point to statements in their critical sections

Freedom from deadlock

79

• “If some processes are trying to enter their critical sections then one
of them must eventually succeed.”

• We don’t have a situation when the processes aren’t making any
progress anymore

Freedom from deadlock

80

• Since the behaviour of processes P and Q is symmetrical, we only
have to check what happens for one of the processes, say P.

• Freedom from deadlock means that from any state where a process
wishes to enter its CS (by awaiting its turn), there is always a path
(sequence of transitions) leading to it entering its CS.

Freedom from deadlock

81

• Typically, a deadlocked state has no transitions leading from it, i.e.
no statement is able to be executed.

• Sometimes a cycle of transitions may exist from a state for each
process, from which no useful progress in the parallel program can
be made. We call this a Livelock. Everyone is ‘busy doing nothing’.

Freedom from individual starvation

82

• “If any process tries to enter its critical section then that process
must eventually succeed.”

• If a process is wishing to enter its CS (awaiting its turn) and another
process refuses to set the turn, the first process is said to be starved.

• Possible starvation reveals itself as cycles in the state diagram.

• Because the definition of the critical section problem allows for a
process to not make progress from its Non-critical section,
starvation is, in general, possible in this example

Dekker‘s Algorithm

Peterson Lock

Filter Lock

Atomic Registers

Atomic Registers

Atomic Registers

Atomic operations

• An atomic action is one that effectively happens at once i.e. this action
cannot stop in the middle nor be interleaved

• It either happens completely, or it doesn’t happen at all.

• No side effects of an atomic action are visible until the action is complete

This essentially means that other Threads think that the change happened in
an instant

89

Hardware support for atomic operations
• Test-And-Set (TAS)

• Compare-And-Swap (CAS)

90

TAS and CAS

boolean TAS(memref s)

if (mem[s] == 0) {

mem[s] = 1;

return true;

} else

return false;

int CAS (memref a, int old, int new)

oldval = mem[a];

if (old == oldval)

mem[a] = new;

return oldval;

91

a
to

m
ic

a
to

m
ic

Lets build a spinlock using RMW operations

In Java…

TAS Spinlock scales horribly, why?

Cache Coherency Protocol

We have a sequential bottleneck!

Each call to getAndSet() invalidates cached copies! => Threads need to
access memory via Bus => Bus Contention!

“[...] the getAndSet() call forces other processors to discard their own
cached copies of the lock, so every spinning thread encounters a cache
miss almost every time, and must use the bus to fetch the new, but
unchanged value.” - The Art of Multiprocessor Programming

Lets try spinning on local cache

It only helped a little bit

What we learned

• (too) many threads fight for access to the same resource

• slows down progress globally and locally

• CAS/TAS: Processor assumes we modify the value even if we fail!

Solution? Exponential Backoff

Idea: Each time TAS fails, wait longer until you re-try

• Backoff must be random!

Exponential backoff

Nice!

	Slide 1: Parallel Programming Exercise Session 7
	Slide 2: Schedule
	Slide 3: Evaluation
	Slide 4: Post-Discussion Exercise 6
	Slide 5: Merge Sort
	Slide 6: Longest Sequence
	Slide 7: Longest Sequence
	Slide 8: Longest Sequence
	Slide 9: Theory Recap
	Slide 10: Thread Safe Counter
	Slide 11: Thread Safe Counter
	Slide 12: Thread Safe Counter
	Slide 13: Java: The synchronized keyword
	Slide 14: java.util.concurrent.Lock Interface
	Slide 15: Lock Flexibility
	Slide 16: Lock Flexibility
	Slide 17: Lock Flexibility
	Slide 18: Implementing Classes of java.util.concurrent.Lock
	Slide 19: Conclusion: Synchronized vs. External Locks
	Slide 20: Basic Synchronization Rules
	Slide 21: Synchronization Issues
	Slide 22
	Slide 23: Deadlock vs Livelock
	Slide 24: Quiz: What is wrong with this code?
	Slide 25: Quiz: What is wrong with this code?
	Slide 26: Possible solution
	Slide 27: Deadlocks and Race conditions
	Slide 28: Pre-Discussion Exercise 7
	Slide 29: Exercise 7
	Slide 30: Multi-threaded Implementation
	Slide 31: Thread-Safe – transferMoney()
	Slide 32: Performance of transferMoney()
	Slide 33: ThreadSafe - sumAccounts()
	Slide 34: Testing
	Slide 35: Old Exam Task (FS 2023)
	Slide 36: Old Exam Task (FS 2023)
	Slide 37
	Slide 38: Wait/notify exam task
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Not yet seen theory
	Slide 53: What will you see soon in the lectures?
	Slide 54: We will take a look at
	Slide 55
	Slide 56
	Slide 57
	Slide 58: But does this really work?
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Visibility not guaranteed
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72: Problem: How do we implement locks?
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Dekker‘s Algorithm
	Slide 84: Peterson Lock
	Slide 85: Filter Lock
	Slide 86: Atomic Registers
	Slide 87: Atomic Registers
	Slide 88: Atomic Registers
	Slide 89
	Slide 90
	Slide 91
	Slide 92: Lets build a spinlock using RMW operations
	Slide 93: In Java…
	Slide 94: TAS Spinlock scales horribly, why?
	Slide 95: Cache Coherency Protocol
	Slide 96: Lets try spinning on local cache
	Slide 97: It only helped a little bit
	Slide 98: What we learned
	Slide 99: Exponential backoff
	Slide 100: Nice!

