
Parallel Programming
Exercise Session 6
Spring 2025

Today

Post-Discussion Ex. 5 (+ some theory)

Ex.5 Theory Tasks

Ex.5 Programming Tasks

Theory

Pre-Discussion Ex. 6

Big Kahoot

Theory Recap based on Kahoot results

If we still have time: hard Wait/Notify exam task

Exam Preparation Session

Monday, March 31, 11:15 – 12:00

Tuesday, April 1, 10:15 – 12:00

HG F 5 / HG F 7

Hosted by ??? / Vera Schubert and Jackson Stanhope

Theory + Post-Discussion Ex. 5

Ex. 5 Theory Tasks

Recall: Amdahl's vs Gustafson's Law

The key goal is to:

➔ Understand the main difference and implications
(i.e., when to use which formula)

➔ Know how to derive the formulas based on your understanding,
not because you memorized them for the exam

Recall: Amdahl's vs Gustafson's Law

p=1 p=4
Amdahl's Law Gustafson's Law

Less time for the parallel part More work in the same time
Time

p=1
p1 p2 p3 p4p1 p2 p3 p4

p=4
p1p1

essentials

Amdahl's Law Derivation
T1 - sequential time

f - sequential fraction

Tp - parallel time on p processors

Tp = 𝑻𝟏𝒇 +
𝑻𝟏(𝟏−𝒇)

𝒑

Sp - speedup

Sp =
𝑇1

𝑇𝑝

Sp =
𝑻𝟏

𝑻𝟏𝒇+
𝑻𝟏 𝟏−𝒇

𝒑

=
𝟏

𝒇+
𝟏−𝒇

𝒑

p=1
Amdahl's Law

p=4

Less time for the parallel part

T1

T1f

T1(1-f)/p

T1f

essentials

Gustafson's Law Derivation

Gustafson's Law W - Work with 1 processor

Wp - Work with p processors

f - sequential fraction

W1 = W1f + W1(1-f)

Wp = W1f + W1(1-f)p

Sp - speedup

Sp = Wp/W1
Sp = f + (1-f)pMore work in the same time

p=4

essentials

fib(4) task graph public class Fibonacci {
public static long fib(int n) {

if (n < 2) {

return n;
}
spawn task for fib(n-1);
spawn task for fib(n-2);
wait for tasks to complete
return addition of task results

}

}

fib(4) task graph FJ public class Fibonacci {
public static long fib(int n) {

if (n < 2) {

return n;
}
spawn task for fib(n-1);
spawn task for fib(n-2);
wait for tasks to complete
return addition of task results

}

}

What is a task?

new forked task, continuation of
current task, join

What is an edge?

spawn, same procedure, wait

essentials

4

2 1

1 0

3 2

1 0

+

+

+

+

The DAG starts in a single thread
(main or worker thread)Tasks are

executed in
parallel

Each forked task
eventually joins

Final result
returned in
single thread

fib(4) simplified task graph public class Fibonacci {
public static long fib(int n) {

if (n < 2) {

return n;
}
spawn task for fib(n-1);
spawn task for fib(n-2);
wait for tasks to complete
return addition of task results

}

}

What is a task?

Call to Fibonacci

What is an edge?

spawn
(no dependency within same procedure)

4

2 1

1 0

3 2

1 0

Simpler at the expense of not modelling
joins and inter-process dependencies

essentials

fib(4) simplified task graph public class Fibonacci {
public static long fib(int n) {

if (n < 2) {

return n;
}
spawn task for fib(n-1);
spawn task for fib(n-2);
wait for tasks to complete
return addition of task results

}

}

What is a task?

Call to Fibonacci

What is an edge?

spawn
(no dependency within same procedure)

4

2 1

1 0

3 2

1 0

Simpler at the expense of not modelling
joins and inter-process dependencies

Caching results can

speed-up computation

essentials

How would you memoize in this example?

• Shared array (initialize with -1)
• We don‘t need to synchronize since different threads will write

the same value to the same entry
• Reading the values is no problem

Critical path: path from start to end
that takes the longest (for some
metric)

Example: #nodes

Task Graphs

essentials

fib(4) task graph FJ public class Fibonacci {
public static long fib(int n) {

if (n < 2) {

return n;
}
spawn task for fib(n-1);
spawn task for fib(n-2);
wait for tasks to complete
return addition of task results

}

}

What is a task?

new forked task, continuation of
current task, join

What is an edge?

spawn, same procedure, wait

4

2 1

1 0

3 2

1 0

essentials

+

+

+

+

critical path length is 7 tasks

fib(4) simplified task graph public class Fibonacci {
public static long fib(int n) {

if (n < 2) {

return n;
}
spawn task for fib(n-1);
spawn task for fib(n-2);
wait for tasks to complete
return addition of task results

}

}

What is a task?

Call to Fibonacci

What is an edge?

spawn
(no dependency within same procedure)

4

2 1

1 0

3 2

1 0

essentials

critical path length is 4 tasks

Task Graph Simplified

Adding eight numbers:

Task: Call to add()

Cut-off: 1

Task Graph Simplified

Adding eight numbers: What is the corresponding task graph?

Task: Call to add()

Cut-off: 1

Task Graph Simplified

Adding eight numbers:
What is the corresponding task graph?

Critical path

8

essentials

[1, …,7]

[1,…, 6]

[1, …,5]

[1, …,4]

[1,…, 3]

[1, ..,8]

[1, 2]

[1]

Task: Call to add()

Cut-off: 1

Task Graph FJ

Adding eight numbers:
What is the corresponding task graph?

essentials

Critical path

15

[1,…,7]

[1,…, 6]

[1,…,5]

[1,…,4]

[1,…, 3]

[1,...,8]

[8]

[7]

[6]

[5]

[4]

[1, 2]
[3]

+
+

+
+ + +

+

[1] [2]

Task: fork, join, continuation

Cut-off: 1

Task Graph Simplified

Adding eight numbers: What is the corresponding task graph?

Task: Call to add()

Cut-off: 1

Task Graph Simplified

Adding eight numbers: What is the corresponding task graph?

Critical path

4

essentials

[1,...,8]

[1,...,4] [5,...,8]

[1,2]
[3,4]

[5,6]

[7,8]

[1] [2] [3] [8]…

Task: Call to add()

Cut-off: 1

Task Graph FJ

Adding eight numbers: What is the corresponding task graph?

Critical path

7

essentials

[1,...,8]

[1,...,4] [5,...,8]

[1,2]

[3,4]

[5,6]
[7,8]

+ +

+++ +

Task: fork, join, continuation

Cut-off: 1

Task Graphs

A wide task graph→ higher
potential parallelism

A deep task graph→more
sequential dependencies

„Easy“ points

• Usually tasks about Amdahl‘s / Gustafson‘s Law, Pipelining,
Task Graphs are the easy tasks in the exam

• You can definitely collect about ~25% of the points by solving
those tasks.

• Practicing for those tasks is straightforward

• Get familiar with the differences of Amdahl and Gustafson. Be able to
derive the formulas by yourself

• Understand formulas intuitively: Amdahl, Gustafson, Pipelining

• Practice Task Graphs

Ex. 5 Programming Tasks

Task 1: Search And Count

Search an array of integers for a certain feature and count integers that
have this feature:

● Light workload: count number of non-zero values.

● Heavy workload: count how many integers are prime numbers.

We will study single threaded and multi-threaded implementation of
the problem.

Task 1 A: Search And Count - Sequential

public class SearchAndCountSingle {

private int[] input;

private Workload.Type type;

private SearchAndCountSingle(int[] input, Workload.Type wt) {

this.input = input;

this.type = wt;

}

private int count() {

int count = 0;

for (int i = 0; i < input.length; i++) {

if (Workload.doWork(input[i], type)) count++;

}

return count;

}

}

Straightforward
implementation. Simply iterate
through the input array and
count how many times given
event occurs.

Divide and Conquer

Basic structure of a divide-and-conquer algorithm:
1. If problem is small enough, solve it directly

2. Otherwise
a. Break problem into subproblems

b. Solve subproblems recursively

c. Assemble solutions of subproblems into overall solution

essentials

++++++++

++++

++

+

Tasks at different
levels of granularity

What determines a task?

i) input array ii) start index iii) length/end index

These are fields we want to store in the task

Divide and Conquer
essentials

Task B

SearchAndCountThreadDivideAndConquer.java

→ Divide and conquer

→ Do not create more threads than numThreads

Divide and Conquer Parallelization
Performance optimization

Same thread is reused instead
of creating a new one

++++++++

++++

++

+

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

thread 8

...

Task B:
Extend your implementation such that it creates only a fixed number of threads. Make

sure that your solution is properly synchronized when checking whether to create a new
thread

How to achieve this?

essentials

Divide and Conquer Parallelization

++++++++

++++

++

+
Option 1:

Shared counter with
synchronized/atomic access

Option 2:
Assign unique sequential id to each
task. Spawn threads for first N tasks.

0

1 2

3 4 5 6

n

2n + 1 2n + 2

+ no synchronization required
- imbalanced amount of work

essentials

Alternative approach (from homework submissions)

Instead of using ids, we give the child tasks „numThreads / 2“
since that‘s the amount of threads that are allowed to be
created in the subtrees.

Let‘s take a look at the master solution

Task D

Implement it with ExecutorService

Let‘s take a look at the master solution.

ExecutorService

Fork/Join: recommended for Divide and Conquer tasks as they have strong task
interdependency

ExecutorService: for handling many independent requests where tasks are standalone

Divide and Conquer vs Fork/Join

Divide And Conquer

Fundamental design pattern based on recursively breaking

down a problem into smaller problems that can be combined to

give a solution to the original problem

Fork/Join

A framework that supports Divide and Conquer style parallelism

essentials

Divide and Conquer vs Fork/Join

Fork/Join

++++++++

++++

++

+

a framework that supports Divide and Conquer style parallelism

problems are solved in parallel

thread 1

thread 2

thread 3

thread 4

thread 5

thread 6

thread 7

...

Performance optimization

Same thread is reused instead
of creating a new one

essentials

Search And Count

public class SearchAndCountMultiple

extends RecursiveTask<Integer> {

private int[] input;

private int start;

private int length;

private int cutOff;

private Workload.Type type;

}

protected Integer compute() {

if (// work is small)

// do the work directly

else {

// split work into pieces

// invoke the pieces and

wait for the results

// combine the results

}

}

protected Integer compute() {

if (length <= cutOff) {

int count = 0;

for (int i = start; i < start + length; i++) {

if (Workload.doWork(input[i], type)) count++;

}

return count;

else {

int half = (length) / 2;

SearchAndCountMultiple sc1 =

new SearchAndCountMultiple(input, start, half, cutOff, type);

SearchAndCountMultiple sc2 =

new SearchAndCountMultiple(input, start + half, length - half, cutOff, type);

sc1.fork();

sc2.fork();

int count1 = sc1.join();

int count2 = sc2.join();

return count1 + count2;

}

}

essentials

Theory

Lock Object

Shared object that satisfies the following interface

public interface Lock{
public void lock(); // entering CS
public void unlock(); // leaving CS

}

providing the following semantics

new Lock make a new lock, initially “not held”

acquire blocks (only) if this lock is already currently “held”
Once “not held”, makes lock “held” [all at once!]

release makes this lock “not held”
If >= 1 threads are blocked on it, exactly 1 will acquire it

18

DO NOT

DISTURB

COME

IN

Required Properties of Mutual Exclusion

Safety Property

§ At most one process executes the critical section
code

Liveness

§ Minimally: acquire_mutex must terminate in finite
time when no process executes in the critical section

19

Required Properties of Mutual Exclusion

Safety Property

§ At most one process executes the critical section
code

Liveness

§ Minimally: acquire_mutex must terminate in finite
time when no process executes in the critical section

19

Almost-correct pseudocode

class BankAccount {
private int balance = 0;
private Lock lk = new Lock();
…
void withdraw(int amount) {

lk.lock(); // may block
int b = getBalance();
if(amount > b)

throw new WithdrawTooLargeException();
setBalance(b – amount);
lk.unlock();

}
// deposit would also acquire/release lk

}

20

One lock for
each account

Almost-correct pseudocode

class BankAccount {
private int balance = 0;
private Lock lk = new Lock();
…
void withdraw(int amount) {

lk.lock(); // may block
int b = getBalance();
if(amount > b)

throw new WithdrawTooLargeException();
setBalance(b – amount);
lk.unlock();

}
// deposit would also acquire/release lk

}

20

One lock for
each account

Lock won’t be released

if exception is thrown!

Solution: Use try/finally block!

Always gets executed

(even after exception
or return)

unlock();

Possible mistakes

Incorrect: Use different locks for withdraw and deposit

§ Mutual exclusion works only when using same lock

§ balance field is the shared resource being protected

Poor performance: Use same lock for every bank account

§ No simultaneous operations on different accounts

Incorrect: Forget to release a lock (blocks other threads forever!)

§ Previous slide is wrong because of the exception possibility!

22

if(amount > b) {
lk.unlock(); // hard to remember!
throw new WithdrawTooLargeException();

}

Re-entrant lock
A re-entrant lock (a.k.a. recursive lock)

“remembers”

§ the thread (if any) that currently holds it

§ a count

When the lock goes from not-held to held, the count is set to 0

If (code running in) the current holder calls lock(acquire):

§ it does not block

§ it increments the count

On unlock(release):

§ if the count is > 0, the count is decremented

§ if the count is 0, the lock becomes not-held

25

thread

count

A

When the lock goes from held to not-held, the count is set to 0

Re-entrant locks work

§ This simple code works fine provided lk
is a reentrant lock

§ Okay to call setBalance directly

§ Okay to call withdraw (won’t block
forever)

26

int setBalance(int x) {
lk.lock();

balance = x;
lk.unlock();

}

void withdraw(int amount) {

lk.lock();
…
setBalance(b – amount);

lk.unlock();

}

Race condition

A Race Condition occurs in concurrent programming when the correctness
of the system depends on the specific interleaving or ordering of
operations executed by multiple threads or processes.

Typically, problem is some intermediate state that “messes up” a concurrent thread
that “sees” that state

Note: This lecture makes a big distinction between data races and bad
interleavings, both instances of race-condition bugs

§ Confusion often results from not distinguishing these or using the ambiguous
“race condition” to mean only one

32

The distinction

Data Race [aka Low Level Race Condition, low semantic level]
Erroneous program behavior caused by insufficiently synchronized
accesses of a shared resource by multiple threads, e.g. Simultaneous
read/write or write/write of the same memory location

(for mortals) always an error, due to compiler & HW

Bad Interleaving [aka High Level Race Condition, high semantic level]
Erroneous program behavior caused by an unfavorable execution order of
a multithreaded algorithm that makes use of otherwise well synchronized
resources.

“Bad” depends on your specification
33

Parallel Patterns

• We are now quite familiar with how to parallize algorithms

• There are a few recurring patterns that are important to know

Map, Reduction, Stencil, Scan, Pack

Reduction

• A reduction is an operation that produces a single answer
from a collection (array etc) via an associative operator.

• Needs to be associative. Otherwise divide-and-conquer won‘t
work

Example: array sum

Map

• Operates on each element of the input data indenpendently
(each array element)

• Output is the same size → no size reduction

• Doesn‘t have to be the same operation on each element

Example: add two arrays

Stencil

• Like map but can take more than one element as input

• Generalization of map and thus also no size reduction

Example:

Image → apply averaging filter on each pixel

Update a value based on its neighbors

Never do it in-place because you would then take values that are
already output values.

Scan

• Collection of data X → return collection of data Y

• Y(i) = functionOf(Y(i - 1) & X(i))

• Seems sequential because of dependencies

• Can parallelize if function is associative → O(log(n)) span

Example: parallel prefix sum

Pack

• Collection of data X → return collection of data X if fulfill
condition

Pack

• First compute bit vector

• Then find index in result array (prefix sum on bit vector)

Pre-Discussion
Exercise 6

Assignment 6

Task Parallelism:
● Merge Sort

● Longest Sequence

Merge sort algorithm

In this exercise you will implement the merge sort algorithm using task
parallelism.

The merge sort algorithm partitions the array into smaller arrays, sorts
each one separately and then merges the sorted arrays.

• By default, the partitioning of the array continues recursively until the array size
is 1 or 2, which then is sorted trivially.

• Try larger cutoff values (e.g partition arrays down to minimum size 4 instead of
2) and see how this affects the algorithm performance.

• Discuss the asymptotic running time of the algorithm and the obtained speedup.

essentials

Longest Sequence

Given a sequence of numbers:

[1, 9, 4, 3, 3, 8, 7, 7, 7, 0]

find the longest sequence of the same consecutive number.

If multiple sequences have the same length, return the first one (the one

with lowest starting index)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] [1, 1, 0, 0]

Longest Sequence

Task:

Implement task parallel version that finds the longest sequence of the same

consecutive number.

Challenge:

The input array cannot be divided arbitrarily. For example:

[1, 2, 3, 3, 4, 1]

[1, 2, 3] [3, 4, 1]Combining results of subtasks

does not give the correct answer!

essentials

Warum?

this.entry

entry.wait();

this.entry

entry.wait();

int t = n_cars_on_roundabout.get();

if (t < 2 && n_cars_on_roundabout.compareAndSet(t, t + 1)) break;

this.entry

entry.wait();

int t = n_cars_on_roundabout.get();

if (t < 2 && n_cars_on_roundabout.compareAndSet(t, t + 1)) break;

current_zone.mutex.lock();

this.entry

entry.wait();

int t = n_cars_on_roundabout.get();

if (t < 2 && n_cars_on_roundabout.compareAndSet(t, t + 1)) break;

current_zone.mutex.lock();

synchronize(entry){

entry.car_clears_entry(this.ticket_number);
entry.notifyAll();

}

this.entry

entry.wait();

int t = n_cars_on_roundabout.get();

if (t < 2 && n_cars_on_roundabout.compareAndSet(t, t + 1)) break;

current_zone.mutex.lock();

synchronize(entry){

entry.car_clears_entry(this.ticket_number);
entry.notifyAll();

}

zone.mutex.lock();
current_zone.mutex.unlock();

this.entry

entry.wait();

int t = n_cars_on_roundabout.get();

if (t < 2 && n_cars_on_roundabout.compareAndSet(t, t + 1)) break;

current_zone.mutex.lock();

synchronize(entry){

entry.car_clears_entry(this.ticket_number);
entry.notifyAll();

}

zone.mutex.lock();
current_zone.mutex.unlock();

current_zone.mutex.unlock();
n_cars_on_roundabout.decrementAndGet();

	Slide 1: Parallel Programming Exercise Session 6
	Slide 2: Today
	Slide 3: Exam Preparation Session
	Slide 4: Theory + Post-Discussion Ex. 5
	Slide 5: Ex. 5 Theory Tasks
	Slide 6: Recall: Amdahl's vs Gustafson's Law
	Slide 7: Recall: Amdahl's vs Gustafson's Law
	Slide 8: Amdahl's Law Derivation
	Slide 9: Gustafson's Law Derivation
	Slide 10: fib(4) task graph
	Slide 11: fib(4) task graph FJ
	Slide 12: fib(4) simplified task graph
	Slide 13: fib(4) simplified task graph
	Slide 14: How would you memoize in this example?
	Slide 15: Task Graphs
	Slide 16: fib(4) task graph FJ
	Slide 17: fib(4) simplified task graph
	Slide 18: Task Graph Simplified
	Slide 19: Task Graph Simplified
	Slide 20: Task Graph Simplified
	Slide 21: Task Graph FJ
	Slide 22: Task Graph Simplified
	Slide 23: Task Graph Simplified
	Slide 24: Task Graph FJ
	Slide 25: Task Graphs
	Slide 26: „Easy“ points
	Slide 27: Ex. 5 Programming Tasks
	Slide 28: Task 1: Search And Count
	Slide 29: Task 1 A: Search And Count - Sequential
	Slide 30: Divide and Conquer
	Slide 31: Divide and Conquer
	Slide 32: Task B
	Slide 33: Divide and Conquer Parallelization
	Slide 34: Divide and Conquer Parallelization
	Slide 35: Alternative approach (from homework submissions)
	Slide 36: Let‘s take a look at the master solution
	Slide 37: Task D
	Slide 38: ExecutorService
	Slide 39: Divide and Conquer vs Fork/Join
	Slide 40: Divide and Conquer vs Fork/Join
	Slide 41: Search And Count
	Slide 42: Theory
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Solution: Use try/finally block!
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67: Parallel Patterns
	Slide 68: Reduction
	Slide 69: Map
	Slide 70: Stencil
	Slide 71: Scan
	Slide 72: Pack
	Slide 73: Pack
	Slide 74: Pre-Discussion Exercise 6
	Slide 75: Assignment 6
	Slide 76: Merge sort algorithm
	Slide 77: Longest Sequence
	Slide 78: Longest Sequence
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92

