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Counter

Let’s count number of times a given event occurs
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public interface Counter {

public void increment();

public int value();

}

// background threads

for (int i = 0; i < numIterations; i++) {

// perform some work

counter.increment();

}

// progress thread

while (isWorking) {

System.out.println(counter.value());

}

essentials
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Task A: SequentialCounter

public class SequentialCounter implements Counter {

public void increment() {

??

}

public int value() {

??

}

}

essentials
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Task A: SequentialCounter

public class SequentialCounter implements Counter {

private int c = 0;

public void increment() {

c++;

}

public int value() {

return c;

}

}

essentials
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Task A: SequentialCounter
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Task A: SequentialCounter
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Task A: SequentialCounter
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Task A: SequentialCounter
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Task A: SequentialCounter

21

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting 

access!

How is this 

possible?

public void increment() {

c++;
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assume c is initialized to value 0
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Task A: SequentialCounter
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}

1. load c → 0 

3. c + 1 → 1 
4. store c ← 1 

2. load c → 0 

5. c + 1 → 1 
6. store c ← 1 

assume c is initialized to value 0

essentials



Task A: SequentialCounter
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How is this 

possible?

public void increment() {

c++;

}

public void increment() {

c = c + 1;

}

1. load c → 0 

3. c + 1 → 1 
4. store c ← 1 

2. load c → 0 

5. c + 1 → 1 
6. store c ← 1 

note that 
increment is 
not atomic!

assume c is initialized to value 0

essentials



24

Task B: SynchronizedCounter

public class SynchronizedCounter implements Counter {

public void increment() {

??

}

public int value() {

??

}

}

essentials
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Task B: SynchronizedCounter

public class SynchronizedCounter implements Counter {

private int c = 0;

public synchronized void increment() {

c++;

}

public synchronized int value() {

return c;

}

}

essentials
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synchronized void increment() {

c++;

}

synchronized void increment() {
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releases lock upon method exit
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Task C

Task: Print which thread performed the increment. Is there a 
pattern?

Solution: No, since Java Threads interleave non-deterministic
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Task D

● Implement a FairThreadCounter that ensures that different 
threads increment the Counter in a round-robin fashion. That is, 
two threads with ids 1 and 2 would increment the value in the 
following order 1, 2, 1, 2, 1, 2, etc. You should implement the 
scheduling using the wait and notify methods. 

● (Optional) Extend your implementation to work with arbitrary 
number of threads (instead of only 2) that increment the counter 
in round-robin fashion.

32

essentials



Wait and Notify Recap
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Object (lock) provides wait and notify methods

(any object is a lock)

wait: Thread must own object’s lock to call wait
thread releases lock and is added to “waiting list” for that object
thread waits until notify is called on the object

notify: Thread must own object’s lock to call notify

notify: Wake one (arbitrary) thread from object’s “waiting list”

notifyAll: Wake all threads

essentials



Wait and Notify Recap
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Spurious wake-ups and notifyAll()
→ wait has to be in a while loop

essentials



Spurious Wake-ups

A waiting thread is woken up without being explicitly notified 
through notify or notifyAll.

Reasons: various

• JVM Implementation: one thread is “nudged for housekeeping”

• Performance (OS dependent): to avoid unnecessary context 
switches, to rebalance CPU load

Java does not prevent them. It expects you to handle them.
35

essentials



36

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Thread 1 must increment first!

essentials



37

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lockthread 2

essentials



38

0

Counter

0

Thread 1

Thread 2

0

Thread 3

lock failed

Suspended:
Thread 3

thread 2

0

essentials



39

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

check

thread 2

Blocked:
Thread 3

essentials



40

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

check

wait

Waiting:
Thread 2

Blocked:
Thread 3

essentials



41

0

Counter

0

Thread 1

Thread 2

0

Thread 3lock

thread 3

0

Waiting:
Thread 2

essentials



42

0

Counter

0

Thread 1

Thread 2

0

Thread 3lock

check

thread 3

0

Waiting:
Thread 2

essentials



43

0

Counter

0

Thread 1

Thread 2

0

Thread 3lock

check

wait

0

Waiting:
Thread 2
Thread 3

essentials



44

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

Waiting:
Thread 2
Thread 3

thread 1

essentials



45

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

check

Waiting:
Thread 2
Thread 3

thread 1

essentials



46

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock

check

increment

Waiting:
Thread 2
Thread 3

thread 1

essentials



47

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock

check

increment

notify or notifyAll?

thread 1

Waiting:
Thread 2
Thread 3

essentials



48

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock

check

increment

notifyAll

unlock

Waiting:
Thread 2
Thread 3

essentials



49

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock

check

increment

notifyAll

unlock

Waiting:
Thread 2
Thread 3

Which thread will be woken 
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How to find the difference between notify vs notifyAll?
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https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html

essentials



When notify instead of notifyAll?

Use it if you don‘t care which thread will be notified.

Generally: use notifyAll to avoid edge cases and deadlocks
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Task D
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Task D
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Task D

The same thing without wait and notify?

→ Busy waiting: while loop constantly checking (less efficient)

→ Some other complex structure: probably also not more efficient

54
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Task E: AtomicCounter

public class AtomicCounter implements Counter {

public void increment() {

??

}

public int value() {

??

}

}

essentials
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Task E: AtomicCounter

public class AtomicCounter implements Counter {

private AtomicInteger c = new AtomicInteger(0);

public void increment() {

c.incrementAndGet();

}

public int value() {

return c.get();

}

}

essentials
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Task E: AtomicCounter

public class AtomicCounter implements Counter {

private AtomicInteger c = new AtomicInteger(0);

public void increment() {

c.incrementAndGet();

}

public int value() {

return c.get();

}

}

What is the difference?

int

c++;

AtomicInteger

c.incrementAndGet();

essentials
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Task E: AtomicCounter

public class AtomicCounter implements Counter {

private AtomicInteger c = new AtomicInteger(0);

public void increment() {

c.incrementAndGet();

}

public int value() {

return c.get();

}

}

What is the difference?

int

c++;

AtomicInteger

c.getAndIncrement();

1. load c → 0 

2. c + 1 → 1 
3. store c ← 1 

not atomic atomic

An operation is atomic if no other 
thread can see it partly executed. 
Atomic as in “appears indivisible”.

However, does not mean it’s 
implemented as single instruction.

essentials



Post- vs Pre-Increment

59

details

Post-Increment

int i = 0;

AtomicInteger c = new AtomicInteger(0);

System.out.println(i++);

System.out.println(c.getAndIncrement());

int i = 0;

AtomicInteger c = new AtomicInteger(0);

System.out.println(++i);

System.out.println(c.incrementAndGet());

Pre-Increment



Task F: Atomic Variables vs Synchronized

Better performance: atomic variables

Why? 

Atomic variables are non-blocking
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Task G

Task: Create a thread that observes the values of the Counter 
during the execution and prints them to the console. Make sure
that the thread is properly terminated once all the work is done.
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Task G
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Theory Recap

63
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Exploiting Parallelism on a Single Core

Pipelining

Instruction-Level Parallelism (ILP)

Vectorization

64



Pipelining: Main Concepts Recap

Latency

Throughput

Balanced/Unbalanced Pipeline

65
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Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation 

(e.g., process a customer)

Throughput

Balanced/Unbalanced Pipeline

66
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Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation 

(e.g., process a customer)

Throughput
amount of work that can be done by a system in a given period of time

(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline

67
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Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation 

(e.g., process a customer)

Throughput
amount of work that can be done by a system in a given period of time

(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline
a pipeline is balanced if each stage takes the same length of time

68
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Instance vs. Stage
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Instance

Stage



Latency

70

Generally, you can take the total time of the first instance.

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒(𝑓𝑖𝑟𝑠𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) = 𝑠𝑢𝑚(𝑡𝑖𝑚𝑒(𝑎𝑙𝑙_𝑠𝑡𝑎𝑔𝑒𝑠))

If not constant, you can calculate it for the 𝑛-th instance.
𝑙𝑎𝑡𝑒𝑛𝑐𝑦
= 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒(𝑓𝑖𝑟𝑠𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) + (max 𝑡𝑖𝑚𝑒_𝑠𝑡𝑎𝑔𝑒 − 𝑡𝑖𝑚𝑒 𝑓𝑖𝑟𝑠𝑡_𝑠𝑡𝑎𝑔𝑒 ) ⋅ (𝑛 − 1)



71https://polybox.ethz.ch/index.php/s/KwIm2IqvWYP79UB?path=%2FSkript#pdfviewer



Library
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Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

At UZH the law students have been tasked with writing a legal essay about the philosophy
of Swiss law. In order to write the essay, each student needs to read four different books
on the subject, denoted as A, B, C and D (in this order).

This exercise is created by Lasse Meinen and is part of the unofficial VIS 
Prüfungsvorbereitungsworkshop Scripts available at:

https://vis.ethz.ch/de/services/pvw-scripts/

essentials
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Library

73

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 1: Let’s assume all law students are a bit too competitive and don’t return any
books before they’re done reading all of them. How long will it take for 4 students until all
of them have started writing their essays?

Over at UZH the law students have been tasked with writing a legal essay about the
philosophy of Swiss law. In order to write the essay, each student needs to read four
different books on the subject, denoted as A, B, C and D (in this order).

essentials



Library
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Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 1: Let’s assume all law students are a bit too competitive and don’t return any
books before they’re done reading all of them. How long will it take for 4 students until all
of them have started writing their essays?

student 1

student 2

student 3

student 4

Total: 4 * 280 min

Latency: 280 min

Throughput: 1 per 280 min

essentials



Library
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Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

Draw diagrams, as seen before
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Library
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Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?
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Library
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Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

essentials



Library
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Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

For this pipeline, latency makes sense only if asked 
for a particular student, not for the whole pipeline.
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Library

79

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?Balanced?
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Library

80

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student 

per 160 minutes

Balanced?

With lead in

(fixed number of students)

essentials



Library
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Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student 

per 120 minutes

Balanced?

Without lead in

(indefinite number of students)

essentials



Library

82

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student 

per 160 minutes

Balanced?

No

The pipeline is not balanced 
since the stages have different length

essentials
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Every student takes the exact same amount of time to read a book, concretely:

1) Reading book E takes 120 minutes 3) Reading book G takes 120 minutes

2) Reading book F takes 80 minutes 4) Reading book H takes 40 minutes

Question 3: At UZH the law students now need to read the books E, F, G, H, in this
particular order. Let’s assume we still have the ”one book at a time” policy.

essentials

Draw diagrams, as seen before



Library
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Every student takes the exact same amount of time to read a book, concretely:

1) Reading book E takes 120 minutes 3) Reading book G takes 120 minutes

2) Reading book F takes 80 minutes 4) Reading book H takes 40 minutes

student 1

student 2

student 3

student 4

Latency?

360 min

360 min

360 min

360 min

Throughput?

1 student 

per 180 minutes

Balanced?

No

The pipeline is not balanced since the stages have 
different length. The latency is constant.
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Every student takes the exact same amount of time to read a summary, concretely:

1) Reading summary E takes 40 minutes 3) Reading summary G takes 40 minutes

2) Reading summary F takes 40 minutes 4) Reading summary H takes 40 minutes

Question 4: A motivated student has written summaries for books E, F and G and shared
them with the library. As our four students would like to enjoy some sun someday, they
decided to read the summaries instead. Every summary takes exactly 40 minutes for each
student.

essentials

Draw diagrams, as seen before



Library
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Every student takes the exact same amount of time to read a summary, concretely:

1) Reading summary E takes 40 minutes 3) Reading summary G takes 40 minutes

2) Reading summary F takes 40 minutes 4) Reading summary H takes 40 minutes

student 1

student 2

student 3

student 4

Latency?

160 min

160 min

160 min

160 min

Throughput?

1 student 

per 70 minutes

Balanced?

Yes

The pipeline is balanced since the stages have the 
same length. The latency is constant

essentials
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Instruction-Level Parallelism

How do we get parallelism out of a program on a single core?

→ Special hardware support

Idea: execute independent instructions in parallel

Independent instructions: result of one isn‘t input of the other

89



operations on vector-like data like arrays

Independent operations of the same type

Vectorization

90



Vectorization

91

Can easily parallelize the

loop:

All interations are independent of

each other

Each thread works on their part

(like in assignment 2)

How about a single core

approach (Vectorization)?

→ SIMD



Single Instruction Multiple Data (SIMD)

92



Vector-Instructions (Assembly)

Combine multiple instructions into a single vector-instruction
93



When does this happen?

Either compiler does it for us (auto-vectorization)

or

Programmer specifies it via vector-instructions

… given that the hardware supports it

(basically all modern hardware does)

94



More on those hardware optimizations

Digital Design and Computer Architecture

SPCA

95
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custom
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custom
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custom



Divide and Conquer

99



With threads

100

For large arrays: Java.lang.OutOfMemoryError: unable to create new native thread



With threads

101

For large arrays: Java.lang.OutOfMemoryError: unable to create new native thread

Sequential cutoff: if (size <= cutoff) then calculate that part sequentially



With threads

102

For large arrays: Java.lang.OutOfMemoryError: unable to create new native thread

Sequential cutoff: if (size <= cutoff) then calculate that part sequentially

t2.run();



What do we want?

Partition the work into desirable sizes without running out of
memory.

Solution: Create Tasks and let the scheduler deside when to map
each task to which thread (with a fixed thread count)

103



Executor-Service

104

Can deadlock, if no threads to execute task



Executor-Service

ex.submit(Runnable task)

Submits a Runnable object for execution and returns a Future 
object representing that task.

ex.submit(Callable<T> task)

Submits a value-returning task for execution and returns a Future 
object representing the pending results of the task.

ex.shutdown()

Previously submitted tasks are executed, but no new tasks will be
accepted.
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Executor-Service
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For what is Executor Service not suitable

Recursive problems where deep structures require waiting for
partial results

Well-suited for flat structures or tasks that can run independently
in parallel
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Fork-Join

Fork/join framework solves the deadlock problem of
ExecutorService

Designed for recursive tasks
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Fork-Join
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Gustafson‘s Law
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Exercise 4
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essentials



Bob, Mary, John and Alice

Task 1 - Pipelining
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50 min 90 min 15 min

a) Laundry time using 
sequential order

b) Design a strategy with 
better laundry time

c) How would the laundry 
time improve if they 
bought a new dryer?

essentials



Task 2 - Pipelining II

Assume a processor that can each cycle issue either:
● one multiplication instruction with latency 6 cycles
● one addition instruction with latency 3 cycles

How many cycles are required to execute following loops?
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for (int i = 0; i < data.length; i += 4) {

j = i + 1;

k = i + 2;

l = i + 3;

data[i] = data[i] * data[i];

data[j] = data[j] * data[j];

data[k] = data[k] * data[k];

data[l] = data[l] * data[l];

}

for (int i = 0; i < data.length; i += 2) {

j = i + 1;

data[i] = data[i] * data[i];

data[j] = data[j] * data[j];

}

for (int i = 0; i < data.length; i++) {

data[i] = data[i] * data[i];

}

essentials



Task 3 - Identify Potential Parallelization

Can we parallelize following two loops using parallel for construct?
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for (int i=1; i<size; i++) { // for loop: i from 1 to (size-1)

if (data[i-1] > 0) // If the previous value is positive

data[i] = (-1)*data[i]; // change the sign of this value

} // end for loop

for (int i=0; i<size; i++) { // for loop: i from 0 to (size-1)

data[i] = Math.sin(data[i]); // calculate sin() of the value

} // end for loop

essentials
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Past Exam Task

Exam, FS 2024
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