Parallel Programming
Exercise Session 4

Spring 2025

Schedule

Post-Discussion Ex. 3
Theory
Pre-Discussion Ex. 4

Quiz

Post-Discussion
Exercise 3

essentials

Counter

Let’s count number of times a given event occurs

// background threads
for (int i = ©0; i < numIterations; i++) {
// perform some worR
public interface Counter {
public void increment(); counter. increment();
public int value(); }

}
// progress thread

while (isWorking) {
System.out.println(counter.value());

}

essentials

10 iterations each Thread 1

0
Counter Thread 2
0 0
Thread 3
0
value of the number of times

shared Counter increment() is called

essentials

Thread 1

0
Counter Thread 2
0 0
Thread 3
0
value of the number of times

shared Counter increment() is called

essentials

Thread 1

1
Counter Thread 2
0 0
Thread 3
0
value of the number of times

shared Counter increment() is called

essentials

Thread 1

1
Increment()
Counter Thread 2
1 0
Thread 3
0
value of the number of times

shared Counter increment() is called

essentials

Thread 1

10
Increment()
Counter Thread 2
10 0
Thread 3
0
value of the number of times

shared Counter increment() is called

essentials

Thread 1

10
Counter Thread 2
15 0
Increment()
Thread 3
5
value of the number of times

shared Counter increment() is called

essentials

Thread 1

10
Counter Thread 2
| t0)
25 incremen 10
Thread 3
5
value of the number of times

shared Counter increment() is called

essentials

Thread 1

10
Counter Thread 2
30 10
Increment()
Thread 3
10
value of the number of times

shared Counter increment() is called

Main

read the
Counter value

Counter

30

value()

value of the
shared Counter

Thread 1

10

Thread 2

10

Thread 3

10

number of times
increment () is called

essentials

13

essentials

Task A: SequentialCounter

public class SequentialCounter implements Counter {

public void increment() {
??

}

public int value() {
??

¥

14

essentials

Task A: SequentialCounter

public class SequentialCounter implements Counter {
private int c = 0;

public void increment() {
C++;

public int value() {
return c;

15

Task A: SequentialCounter

Counter

0

public void increment() {

}

C++;

Thread 1

0

Thread 2

0

Thread 3

0

essentials

Task A: SequentialCounter

Counter
conflicting 1
access!
How is this public void increment() {
possible? C++;

}

Thread 1

1

Thread 2

1

Thread 3

0

essentials

Task A: SequentialCounter

Counter
conflicting 1
access!
How is this public void increment() {
possible? C++;

}

|

public void increment() {
c=c+1;

}

Thread 1

1

Thread 2

1

Thread 3

0

essentials

Task A: SequentialCounter

assume c is initialized to value O
1.loadc — 0

Counter
conflicting 1
access!
How is this public void increment() {
possible? C++;

}

|

public void increment() {
c=c+1;

}

Thread 1

1

Thread 2

1

Thread 3

0

essentials

Task A: SequentialCounter

assume c is initialized to value O
1.loadc — 0

Counter
2.loadc —0
conflicting 1
access!
How is this public void increment() {
possible? C++;

}

|

public void increment() {
c=c+1;

}

Thread 1

1

Thread 2

1

Thread 3

0

essentials

Task A: SequentialCounter

assume c is initialized to value O

1.loadc — 0
3.c+1 -1
4. storec «— 1

Counter
2.loadc —0
conflicting 1
access!
How is this public void increment() {
possible? C++;

}

|

public void increment() {
c=c+1;

}

Thread 1

1

Thread 2

1

Thread 3

0

essentials

Task A: SequentialCounter

Counter
conflicting 1
access!
How is this
possible?

assume c is initialized to value O

1.loadc — 0
3.c+1 -1
4. storec «— 1

2.loadc —0
5.c+1 -1
6. storec «— 1

public void increment() {

|

public void increment() {
c=c+1;

C++;

}

}

Thread 1

1

Thread 2

1

Thread 3

0

essentials

Task A: SequentialCounter

note that
increment is
not atomic!
Counter
conflicting 1
access!
How is this
possible?

assume c is initialized to value O

N
3.c+1 -1
4. storec «— 1

2.loadc —0
5.c+1 -1
6. storec «— 1

public void increment() {

|

public void increment() {
c=c+1;

C++;

}

}

Thread 1

1

Thread 2

1

Thread 3

0

essentials

23

essentials

Task B: SynchronizedCounter

public class SynchronizedCounter implements Counter {

public void increment() {
??

}

public int value() {
??

¥

24

essentials

Task B: SynchronizedCounter

public class SynchronizedCounter implements Counter {
private int c = 0;

public synchronized void increment() {
C++;

public synchronized int value() {
return c;

25

essentials

Task B: SynchronizedCounter

Thread 1
— synchronized void increment() {
O C++;
}
Counter Thread 2
0 0
Thread 3

0

essentials

Task B: SynchronizedCounter

Counter

0

thread 1

1

Thread 1

—> synchronized void increment() {

0

}

Thread 2

— synchronized void increment() A

0

}

Thread 3 Thread 2 tries to acquire lock on counter.
As the lock is already acquired by thread 1
the thread 2 suspends its execution.

0

essentials

Task B: SynchronizedCounter

Counter

1

thread 1

1

Thread 1

synchronized void increment() {

- -

}

Thread 2

synchronized void increment() {

0

}

Thread 3 Thread 2 tries to acquire lock on counter.
As the lock is already acquired by thread 1
the thread 2 suspends its execution.

0

essentials

Task B: SynchronizedCounter

Counter

1

Thread 1

synchronized void increment() {

1

|}

releases lock upon method exit

Thread 2

synchronized void increment() {

0

}

Thread 3

0

29

essentials

Task B: SynchronizedCounter

Thread 1

synchronized void increment() {

1

}
thread 2

Counter Thread 2

— synchronized void increment() A

1 0 Cht;

}

Thread 3

0

30

Task C

Task: Print which thread performed the increment. Is there a
pattern?

Solution: No, since Java Threads interleave non-deterministic

essentials

Task D

e Implement a FairThreadCounter that ensures that different
threads increment the Counter in a round-robin fashion. That is,
two threads with ids 1 and 2 would increment the value in the
following order 1, 2, 1, 2, 1, 2, etc. You should implement the
scheduling using the wait and notify methods.

e (Optional) Extend your implementation to work with arbitrary

number of threads (instead of only 2) that increment the counter
in round-robin fashion.

essentials

Wait and Notify Recap

Object (lock) provides wait and notify methods
(any object is a lock)

walt: Thread must own object’s lock to call wait
thread releases lock and is added to “waiting list” for that object

thread waits until notifyis called on the object

notify: Thread must own object’s lock to call notify
notify: Wake one (arbitrary) thread from object’s “waiting list”
notifyAll: Wake all threads

essentials

Wait and Notify Recap

(condition) { (condition) {

counter.wait(); counter.wait();

Spurious wake-ups and notifyAll()
- wait hastobeinawhile loop

34

essentials

Spurious Wake-ups

A waiting thread is woken up without being explicitly notified
through notify ornotifyAll.

Reasons: various
JVM Implementation: one thread is “nudged for housekeeping”

Performance (OS dependent): to avoid unnecessary context
switches, to rebalance CPU load

Java does not prevent them. It expects you to handle them.

Thread 1 must increment first!

Counter

0

Thread 1

0

Thread 2

0

Thread 3

0

essentials

Counter

thread 2

.

lock

Thread 1

Thread 2

Thread 3

essentials

37

essentials

Thread 1

0

thread 2

Counter E Thread 2

0

Suspended:
Thread 3

lock failed

Thread 3

38

Blocked:
Thread 3

Counter

thread 2

E

«

lock
check

Thread 1

0

Thread 2

Thread 3

essentials

39

Waiting:
Thread 2

Blocked:
Thread 3

Counter

0

lock
check
walit

Thread 1

0

Thread 2

0

Thread 3

0

essentials

essentials

Thread 1

Counter "¢*%3
Waiting: ﬂ Thread 2
Thread 2

lock Thread 3

41

Waiting:
Thread 2

Counter

0

thread 3

|

lock
check

Thread 1

0

Thread 2

0

Thread 3

0

essentials

Waiting:
Thread 2
Thread 3

Counter

0

lock
check
wait

Thread 1

0

Thread 2

0

Thread 3

0

essentials

essentials

Thread 1

lock

thread 1

Counter

Waiting:
Thread 2
Thread 3

Thread 2

Thread 3

44

essentials

Thread 1

lock
check

thread 1

Counter

Waiting:
Thread 2
Thread 3

Thread 2

Thread 3

45

essentials

Thread 1

lock
check
increment

thread 1

Counter

Waiting:
Thread 2
Thread 3

Thread 2

Thread 3

46

essentials

Thread 1

lock

check

iIncrement

notify or notifyAll?

thread 1
Counter

Thread 2

Waiting:
Thread 2
Thread 3

Thread 3

47

Waiting:
Thread 2
Thread 3

Counter

lock
check
Increment
notifyAll
unlock

Thread 1

1

Thread 2

0

Thread 3

0

essentials

lock
check
Increment
notifyAll
unlock

Waiting: Counter

Thread 2

Thread 3

Which thread will be woken
up and acquire the lock?

Which thread will be woken up if
we use notify instead of notifyAll?

Thread 1

1

Thread 2

0

Thread 3

0

essentials

How to find the difference between notify vs notifyAll?

notify

public final void notify()

Wakes up a single thread that is waiting on this object's monitor. If any

== le =R AEREEEN k= Ll e] ||l] L e L LR L]

The choice is arbitrary and occurs at the discretion of the implementation.
H == 1" F= B = Bl 1]] i T Ly O 2 W d e LT
notifyAll

public final void notifyAlL()

[Wahes up all threads that are waiting on this object's m{:nitr:-r]ﬁ. thread
walts on an object's monitor by calling one of the walt methods.

https://docs.oracle.com/en/javal/javase/l7/docs/api/java.base/java/lang/Object.html

essentials

50

When notify instead of notifyAll?

Use it if you don‘t care which thread will be notified.

Generally: use notifyAll to avoid edge cases and deadlocks

Task D

public static void taskD() {
Counter counter = new SequentialCounter();
count(counter, numThreads:2, ThreadCounterType.FAIR, numInterations:100000);

System.out.println("Task D, Counter: " + counter.value());

52

Task D

public class FairThreadCounter extends ThreadCounter {

public FairThreadCounter(Counter counter, int id, int numThreads, int numIterations) {
super(counter, id, numThreads, numIterations);

@0verride
public void run() {
for (int i = @; i < numIterations; i++
synchronized (counter) {
while (counter.value() % numThreads != id)
try
counter.wait();
catch (InterruptedException e
e.printStackTrace();

counter.increment();
counter.notifyAll();

53

Task D

The same thing without wait and notify?

> Busy waiting: while loop constantly checking (less efficient)
> Some other complex structure: probably also not more efficient

essentials

Task E: AtomicCounter

public class AtomicCounter implements Counter {

public void increment() {
??

public int value() {
??

55

essentials

Task E: AtomicCounter

public class AtomicCounter implements Counter {
private AtomicInteger c = new AtomicInteger(0);

public void increment() {
c.incrementAndGet();

public int value() {
return c.get();

56

essentials

Task E: AtomicCounter

public class AtomicCounter implements Counter {
private AtomicInteger c = new AtomicInteger(0);

public void increment() {
c.incrementAndGet();

public int value() {
return c.get();

What is the difference?

int AtomicInteger

CH+; c.incrementAndGet();

57

essentials

Task E: AtomicCounter

public class AtomicCounter implements Counter {
private AtomicInteger c = new AtomicInteger(0);

public void increment() {
c.incrementAndGet();

public int value() {

return c.get(); An operation is atomic if no other

thread can see it partly executed.
Atomic as in “appears indivisible”.
However, does not mean it’s

What is the difference? implemented as single instruction.

. . incrementAndGet
int AtomicInteger

1. loadc —0 public final int incrementAndGet()
2.c+1 -1 —

C++; C. getAndIn crement () ; —_— Atomically increments by one the current value.
3. storec 1

Returns:

. . the updated value
not atomic atomic

Post- vs Pre-Increment

Post-Increment
int 1 = 0;
AtomicInteger c = new AtomicInteger(Q);

System.out.println(i++);
System.out.println(c.getAndIncrement());

Pre-Increment
int 1 = 0;
AtomicInteger c = new AtomicInteger(Q);

System.out.println(++i);
System.out.println(c.incrementAndGet());

details

59

Task F: Atomic Variables vs Synchronized

Better performance: atomic variables

Why?
Atomic variables are non-blocking

Task G

Task: Create a thread that observes the values of the Counter
during the execution and prints them to the console. Make sure
that the thread is properly terminated once all the work is done.

Task G

void taskG() {

Counter counter = new AtomicCounter();

You, 22 seconds ago | 2 authors (juorel and one other)

Thread progressThread = new Thread(new Runnable() {

@Override
void run() {
while (!Thread.currentThread().isInterrupted()
System.out.println(counter.value());

});

progressThread.start();

count(counter, 4, ThreadCounterType.NATIVE,
progressThread. interrupt();

try

progressThread.join();
catch (InterruptedException e
e.printStackTrace();

System.out.println("Counter: " + counter.value());

100000) ;

62

essentials

Theory Recap

Exploiting Parallelism on a Single Core
Pipelining
Instruction-Level Parallelism (ILP)

Vectorization

essentials

Pipelining: Main Concepts Recap

Latency

Throughput

Balanced/Unbalanced Pipeline

essentials

Pipelining: Main Concepts Recap

Latency

time needed to perform a given computation
(e.g., process a customer)

Throughput

Balanced/Unbalanced Pipeline

essentials

Pipelining: Main Concepts Recap

Latency

time needed to perform a given computation
(e.g., process a customer)

Throughput

amount of work that can be done by a system in a given period of time
(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline

essentials

Pipelining: Main Concepts Recap

Latency

time needed to perform a given computation
(e.g., process a customer)

Throughput

amount of work that can be done by a system in a given period of time
(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline

a pipeline is balanced if each stage takes the same length of time

Instance vs. Stage

Stage

student 3 - -

student 4 -

69

Latency

Generally, you can take the total time of the first instance.
latency = total_time(first_instance) = sum(time(all_stages))

If not constant, you can calculate it for the n-th instance.
latency
= total_time(first_instance) + (max(time_stage) — time(first_stage)) - (n—1)

Definition 4.2.2. Throughput is the number of elements that exit the pipeline (at full capacity)
per a given time unit. Throughput can be calculated as follows for any pipeline with one execution

unit per stage:
1

max(computationtime(stages))

Throughput =

Definition 4.2.3. Throughput under consideration of lead-in and lead-out time given n
elements traverse the pipeline is the average time it takes to output an element. This throughput
can be calculated as follows for any pipeline with one execution unit per stage:

n
overall time for n elements

n
~ n * maz(computationtime(stages)) + sum(computationtime(all stages except longest))

https://polybox.ethz.ch/index.php/s/Kwim2IiqvWY P79UB ?path=%2F Skript#pdfviewer

essentials

Library

At UZH the law students have been tasked with writing a legal essay about the philosophy

of Swiss law. In order to write the essay, each student needs to read four different books
on the subject, denoted as A, B, C and D (in this order).

This exercise is created by Lasse Meinen and is part of the unofficial VIS
Prufungsvorbereitungsworkshop Scripts available at:

https://vis.ethz.ch/de/services/pvw-scripts/

Every student takes the exact same amount of time to read a book, concretely:
1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes
2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

72

https://vis.ethz.ch/de/services/pvw-scripts/

essentials

Library

Over at UZH the law students have been tasked with writing a legal essay about the
philosophy of Swiss law. In order to write the essay, each student needs to read four
different books on the subject, denoted as A, B, C and D (in this order).

Question 1: Let’s assume all law students are a bit too competitive and don’t return any
books before they’'re done reading all of them. How long will it take for 4 students until all
of them have started writing their essays?

Every student takes the exact same amount of time to read a book, concretely:
1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes
2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

essentials

Libra ry Total: 4 * 280 min

Latency: 280 min

student 1 _ Throughput: 1 per 280 min
student 2 - I
student 3 - I

student 4 .

Question 1: Let’s assume all law students are a bit too competitive and don’t return any
books before they’'re done reading all of them. How long will it take for 4 students until all
of them have started writing their essays?

Every student takes the exact same amount of time to read a book, concretely:
1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes
2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

74

essentials

Library

Draw diagrams, as seen before

Question 2: The library introduces a “one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

Every student takes the exact same amount of time to read a book, concretely:
1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes
2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

essentials

Library

Latency?

student 1
student 2

student 3

student 4

Question 2: The library introduces a “one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

Every student takes the exact same amount of time to read a book, concretely:
1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes
2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

76

essentials

Library

Latency?
student 1 280 min
student 2 320 min
student 3 360 min
student 4 400 min

Question 2: The library introduces a “one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

Every student takes the exact same amount of time to read a book, concretely:
1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes
2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

77

Library

student 1
student 2
student 3

student 4

For this pipeline, latency makes sense only if asked
for a particular student, not for the whole pipeline.

essentials

Latency?

280 min
320 min
360 min

400 min

Question 2: The library introduces a “one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes
2) Reading book B takes 40 minutes

3) Reading book C takes 120 minutes
4) Reading book D takes 40 minutes

78

essentials

Library

Balanced? Throughput? Latency?

student 1 280 min
student 2 320 min
student 3 360 min
student 4 400 min

Question 2: The library introduces a “one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

Every student takes the exact same amount of time to read a book, concretely:
1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes
2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

79

essentials

Library

Balanced? Throughput? Latency?

student 1 1 student 280 min
student 2 per 160 minutes 320 min
With lead in _
student 3 (fixed number of students) 360 min
student 4 - 400 min

< >
Question 2: The library introduces a “one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

Every student takes the exact same amount of time to read a book, concretely:
1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes
2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

80

essentials

Library

Balanced? Throughput? Latency?

student 1 1 1 student 280 min
student 2 - -) . per 120 minutes 320 min

- Without lead in _
student 3 (indefinite number of students) 360 min

student 4 - 1 e 400 mir

Question 2: The library introduces a “one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

Every student takes the exact same amount of time to read a book, concretely:
1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes
2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

81

Library

Balanced? Throughput?

student 1 _ No 1 student

student 2

student 3

student 4

per 160 minutes

The pipeline is not balanced

since the stages have different length

Every student takes the exact same amount of time to read a book, concretely:
3) Reading book C takes 120 minutes
4) Reading book D takes 40 minutes

1) Reading book A takes 80 minutes
2) Reading book B takes 40 minutes

Latency?

280 min
320 min
360 min

400 min

essentials

82

essentials

Library

Draw diagrams, as seen before

Question 3: At UZH the law students now need to read the books E, F, G, H, in this
particular order. Let’s assume we still have the "one book at a time” policy.

Every student takes the exact same amount of time to read a book, concretely:
1) Reading book E takes 120 minutes 3) Reading book G takes 120 minutes
2) Reading book F takes 80 minutes 4) Reading book H takes 40 minutes

Library

student 1
student 2
student 3

student 4

Balanced? Throughput?

No 1 student

per 180 minutes

The pipeline is not balanced since the stages have
different length. The latency is constant.

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book E takes 120 minutes
2) Reading book F takes 80 minutes

essentials

Latency?

360 min
360 min
360 min

360 min

3) Reading book G takes 120 minutes
4) Reading book H takes 40 minutes

84

essentials

Library

Draw diagrams, as seen before

Question 4: A motivated student has written summaries for books E, F and G and shared
them with the library. As our four students would like to enjoy some sun someday, they

decided to read the summaries instead. Every summary takes exactly 40 minutes for each
student.

Every student takes the exact same amount of time to read a summary, concretely:
1) Reading summary E takes 40 minutes 3) Reading summary G takes 40 minutes

2) Reading summary F takes 40 minutes 4) Reading summary H takes 40 minutes

essentials

Library

Balanced? Throughput? Latency?

student 1 Yes 1 student 160 min

student 3 160 min

student 2 - per 70 minutes 160 min

student 4 160 min

The pipeline is balanced since the stages have the
same length. The latency is constant

Every student takes the exact same amount of time to read a summary, concretely:
1) Reading summary E takes 40 minutes 3) Reading summary G takes 40 minutes
2) Reading summary F takes 40 minutes 4) Reading summary H takes 40 minutes

86

31:26

MemtoReg

5:0

25:21

20:16

CLK
PC A RD Instr
Instruction
Memory
— PCPlus4
4 -

20:16

15:11

+

Cont_roi MemWrite

Unit B b
ranc
ALUControly {)—'Pasro

Op ALUSrc

Funct |RegDst
egWrite

N

C!I_K Cx].K

AT 3 RD1 SrcA ~ £Er0 3

S| ALUResult ReadData
| ~ 3 = A RD 1

A2 RD2 0]sreB| < Data

A3 1 M

w3 Register — WiteData W;mory
File

[0
- 1
WriteRega:o
15:0 |/|§9m
— Sign Extend PCBranch

Result

Figure 7.11 Complete single-cycle MIPS processor

87

Ct;.K

: : cg;] ALUQUW.
CEK CLK CLK CLK §
= ——1N (e
Y 25:21 WES Y SrcAE i |zerom WE .

0 PC'.&PCF A RD _ InstrD A1l RD1 1 : = 0
1 .2 ALUOUtM A RD L ReadDataW .
Instruction - 20:16] < $:

Memory i 02 O IsrcBE Data '

: A3 i L i WriteDataM Memory
WD3 Reg!ster 3 WriteDataE : WD
File :
20:16 . |RtE -L . : . ' .
H 0 WriteRegE .o . | WriteRegMy,o + | WriteRegW,.o
15:11 : |RdE ; : :
15:0 “4' , <<2
4 ign Exten SignimmE . : |PcBranchm
PCPlus4F PCPIus4D PCPIus4E
x ResultW
Fetch : Decode § Execute : Memory i Writeback

Instruction-Level Parallelism

How do we get parallelism out of a program on a single core?
— Special hardware support

ldea: execute independent instructions in parallel
Independent instructions: result of one isn‘t input of the other

Al <- a + b

A2 <- c + d
A3 <- Al + A2

89

Vectorization

operations on vector-like data like arrays

Independent operations of the same type

Vectorization

Can easily parallelize the
loop: double[] a = ...;

doublel[] b = ...;

All interations are independent of
each other

double[] result= new double [SIZE]:

Each thread works on their part final int SIZE = a.length;
(like in assignment 2) . . ' S
for(int i=0; i<SIZE; i++){
result[i] = a[i] + b[i];
How about a single core h

approach (Vectorization)? return result;
- SIMD 1

Single Instruction Multiple Data (SIMD)

VLOAD V1, (a) // load next two doubles of 'a'
VLOAD V2, (b) // load next two doubles of 'b'’
VMUL V3, V1, V2 // V3 <- V1 * V2

vl va v3

92

Vector-Instructions (Assembly)

vmovdqu 0x10(%r9, %rbx, 8), %ymmO

vmulpd 0x10(Y%rcx, %rbx, 8), %ymmO, %ymmO
vmovdqu %ymmO, 0x10(%r13, %rbx, 8)

movslq hebx, Jhrsi

vmovdqu 0x30(%r9, %rsi, 8), %ymmO

vmulpd 0x30(%rcx, %rsi, 8), %ymmO, %ymmO
vmovdqu %ymmO, O0x30(%r13, %rsi, 8)

Combine multiple instructions into a single vector-instruction

93

When does this happen?

Either compiler does it for us (auto-vectorization)

or
Programmer specifies it via vector-instructions

... given that the hardware supports it
(basically all modern hardware does)

More on those hardware optimizations

Digital Desigh and Computer Architecture
SPCA

Work Partitioning & Scheduling

. work partitioning
— split up work into parallel tasks/threads
— (done by user)
— A task is a unit of work
— also called: task/thread decomposition

. scheduling
— assign tasks to processors
— (typically done by the system)
— goal: full utilization
(no processor is ever idle)

Cm >

work partitioning

scheduling

:

225
580

I

Processors

custom

of chunks
should be larger
than the # of
processors

custom

Q000000000

0000000000
0000000000

Task/Thread Granularity
0000000000
QCO0O0000000

o
LW

Coarse granularity Fine granularity

custom

Coarse vs Fine granularity

. Fine granularity:
- more portable
(can be executed in machines with more processors)
— better for scheduling

- but: if scheduling overhead is comparable to a single task - overhead
dominates

Task granularity guidelines

. As small as possible

. but, significantly bigger than scheduling overhead
- system designers strive to make overheads small

Divide and Conquer

+/+\+
+/\+ +/\
T T T +

T
NN NN N N N
i g S G B o B 0 B
INEERENEEEENEEEENEEEENEEENNEENNENENEEENENEEEY

With threads

public class SumThread extends Thread {
int[] xs;

int h, 1;

int result;

public SumThread(int[] xs, int 1, int h){
super();
this.xs = xs;
this.h = h;
this.l = 1;

public void run(){
/* Do computation and write to result */
return;

public void run(){
int size = h - 1;
if (size == 1) {
result = xs[1];
return;
}
int mid = size / 2;
SumThread t1 = new SumThread(xs, 1, 1 + mid);
SumThread t2 = new SumThread(xs, 1 + mid, h);

tl.start();
t2.start();

Remark: This doesn’t compile because
join() can throw exceptions. We need a
try-catch block here.

tl.join(); _
t2.j0in();

result = tl.result + t2.result;
return;

For large arrays: Java.lang.OutOfMemoryError: unable to create new native thread

100

With threads

Sequential cutoff: if (size <= cutoff) then calculate that part sequentially

public class SumThread extends Thread { ////
:!'nt[] XS5 public void run(){
int h, 1; int size = h - %
int result; if (size == 1) {
result = xs[1];
return;
. i . . }
public SumThread(int[] xs, int 1, int h){ int mid = size / 2;
super(); SumThread t1 = new SumThread(xs, 1, 1 + mid);
this.xs = xs; SumThread t2 = new SumThread(xs, 1 + mid, h);
th:!.S.h = h; tl.start();
this.1l = 1; t2.start();
} L Remark: This doesn’t compile because
332128’ « join() can throw exceptions. We need a

try-catch block here.

public void run(){ . . result = tl.result + t2.result;
/* Do computation and write to result */ return;

return; }

For large arrays: Java.lang.OutOfMemoryError: unable to create new native thread
101

With threads

Sequential cutoff: if (size <= cutoff) then calculate that part sequentially

public class SumThread extends Thread { ////
:!'nt[] XS5 public void run(){
int h, 1; int size = h - %
int result; if (size == 1) {
result = xs[1];
return;
. i . . }
public SumThread(int[] xs, int 1, int h){ int mid = size / 2;
super(); SumThread t1 = new SumThread(xs, 1, 1 + mid);
this.xs = xs; SumThread t2 = new SumThread(xs, 1 + mid, h);
th:!.S.h = h; tl.start();
this.1l = 1; —bdrstartOF
} t2.run(); . Remark: This doesn’t compile because
t. ;!o%n(), « join() can throw exceptions. We need a
— 2

try-catch block here.

public void run(){ . . result = tl.result + t2.result;
/* Do computation and write to result */ return;

return; }

For large arrays: Java.lang.OutOfMemoryError: unable to create new native thread
102

What do we want?

Partition the work into desirable sizes without running out of
memory.

Solution: Create Tasks and let the scheduler deside when to map
each task to which thread (with a fixed thread count)

Executor-Service

Executor Service
Task Thread

Pool

Submitters

Task Queue

(((((((

Can deadlock, if no threads to execute task

104

Executor-Service

ex.submit(Runnable task)

Submits a Runnable object for execution and returns a Future
object representing that task.

ex.submit(Callable<T> task)

Submits a value-returning task for execution and returns a Future
object representing the pending results of the task.

ex.shutdown()

Previously submitted tasks are executed, but no new tasks will be
accepted.

Executor-Service

public static void main(Stringl[] args) {
/* submit 100 callables to the service and store the returned
Future objects in a list */
ExecutorService ex = Executors.newFixedThreadPool(4);
List<Future<Integer>> futures = new ArrayList<>();
for (int i = 0; i < 100; i++) {
Future<Integer> future = ex.submit(new MyCallable());
futures.add (future) ;

}

// sum up the results of all tasks
int sum = 0;
for (Future<Integer> future : futures) {
try {
sum += future.get();
} catch (InterruptedException | ExecutionException e) {
e.printStackTrace();
}
}

System.out.println("Sum of all results: " + sum);
ex.shutdown() ;

106

For what is Executor Service not suitable

Recursive problems where deep structures require waiting for
partial results

Well-suited for flat structures or tasks that can run independently
in parallel

Fork-Join

Fork/join framework solves the deadlock problem of
ExecutorService

Designed for recursive tasks

Fork-Join

public int sumArray(int[] arr) {
ForkJoinPool fj = new ForkJoinPool(4);

SumRecCall sumTask = new SumRecCall(arr, 0, arr.length);
int result = fj.invoke(sumTask);

fj.shutdown() ;
return result,

int mid = size / 2;

SumRecCall first = new SumRecCall(arr, startldx, startIdx + mid);
SumRecCall second = new SumRecCall(arr, startIdx + mid, endIdx);
first.fork();

second.fork();

int firstSum = first.join();

int secondSum = second.join();

return firstSum + secondSum;

109

custom

Parallel Performance
Sequential execution time: T,

Execution time Tp onp CPUs
- T,= T,/p (perfection)
-T,>T, /p (performance loss, what normally happens)
- T, < T,/p (sorcery!)

110

custom

(parallel) Speedup

(parallel) speedup S on p CPUs:

S, =T,/ T,

S, =P — linear speedup (perfection)
S, <P > sub-linear speedup (performance loss)
S, > P > super-linear speedup (sorcery!)

Efficiency: S| / p

custom

Amdahl’s Law — Ingredients

Given P workers available to do parallelizable work, the times for
sequential execution and parallel execution are:

I; = Weer + VVpar

And this gives a bound on speed-up:

VVpar
P

Tp 2 VI/SBT' +

I/I/se:r + VVpar 1

S

p =

|

Weer +

custom

Amdahl’s Law lllustrated

Serial work

Parallelizable work

|

113

custom

Amdahl’s Law lllustrated

P=1 P=2
Serial work
Parallelizable work I

aw |

114

custom

Amdahl’s Law lllustrated

Pa1 P=2 Ped
Serial work
Parallelizable work I III

awi|

115

custom

Amdahl’s Law lllustrated

P=1 P=2 P=4 P=8
Serial work I
N I III EEEEEEE
arallelizable work

awi |

116

custom

Speedup 1000

Serial Speedup K 672
fraction
* 0.1%
* 1%
- 10% 100
30%
< 50%
-- 10
3
I 1 1 1

1 2 4 8 16 32 64 128 256 512 1024 2048
Number of workers

117

Gustafson‘s Law

W=£f«xW+1-f)«xW

Wp=Ff«W+Px(1—-£)«xW

Sp=f+P(1-f)
=P—f(P-1)

custom

custom

Gustafson’s Law

P=1
Senal work

Parallelizable work

oLl |

119

custom

Gustafson’s Law

P=1 P=2
Seral work
Parallelizable work

awl |

120

custom

Gustafson’s Law

serial work

P=1 P=2
P:iraez:ibewnrkl |I |I|I

awli |

121

custom

Gustafson’s Law

serial work

P=1 P=2
P:iraez:ibewnrkl |I |I|I III|IIII

awli |

122

Exercise 4

essentials

Task 1 - Pipelining

Bob, Mary, John and Alice

50 min

/ -';@ w.o‘
(R
2

90 min

a) Laundry time using
sequential order

essentials

b) Design a strategy with

better laundry time

c) How would the laundry

time improve if they
bought a new dryer?

124

essentials

Task 2 - Pipelining |l

Assume a processor that can each cycle issue either:

e one multiplication instruction with latency 6 cycles
e one addition instruction with latency 3 cycles

How many cycles are required to execute following loops?

for (int i = @; i < data.length; i++) { for (int i = @; i < data.length; i += 2) { for (int i = ©; i < data.length; i += 4) {
data[i] = data[i] * data[i]; j=1i+1; j=1i+1;
} data[i] = data[i] * data[i]; k =1+ 2;
data[j] = data[j] * data[j]; l =1+ 3;
} data[i] = data[i] * data[i];
data[j] = data[j] * data[j];

]
data[k] = data[k] * data[k];
data[l] = data[l] * data[l];

essentials

Task 3 - Identify Potential Parallelization

Can we parallelize following two loops using parallel for construct?

for (int i=1; i<size; i++) { // for Loop: 1 from 1 to (size-1)
if (data[i-1] > 9) // If the previous value is positive
data[i] = (-1)*data[i]; // change the sign of this value
} // end for Loop
for (int i=0; i<size; i++) { // for Loop: 1 from @ to (size-1)
data[i] = Math.sin(data[i]); // calculate sin() of the value
} // end for Loop

126

essentials

Past Exam Task

Pipelining. Pipelining.
Sie leiten eine Produktionslinie in einer Fa- You are managing a factory production
brik, bei der die Produkte vier Montagephasen line where products go through four stages
durchlaufen. Jede Phase hat eine spezifische Be- of assembly. Each stage has a specific pro-
arbeitungszeit: cessing time:
(A) Material schneiden: 5 Minuten pro Pro- (A) Cutting materials: 5 min per prod-
dukt. uct.
(B) Teile zusammenbauen: 10 Minuten pro (B) Assembling parts: 10 min per prod-
Produkt. uct.
(C) Lackieren: 15 Minuten pro Produkt. (C) Painting: 15 min per product.
(D) Qualitdatspriifung: 7 Minuten pro Pro- (D) Quality check: 7 min per product.
dukt.

Exam, FS 2024 127

Past Exam Task

i. Was ist der Throughput der Produkti-
onslinie? Spezifizieren Sie die Einhei-
ten.

ii. Was ist die Latency der Produktionslinie?
Spezifizieren Sie die Einheiten.

Exam, FS 2024

essentials

What is the throughput of the pro- (1)
duction line? Specify the units.

What is the latency of the production (1)
line? Specify the units.

128

essentials

Past Exam Task

i. Was ist der Throughput der Produkti- What is the throughput of the pro- (1)
onslinie? Spezifizieren Sie die Einhei- duction line? Specify the units.
ten.

Throughput = 60/15 = 4 products per hour

or
Throughput = 1/15 = 1 product/15min

ii. Was ist die Latency der Produktionslinie? What is the latency of the production (1)
Spezifizieren Sie die Einheiten. line? Specify the units.

Latency = 5 + 10 + 15 + 7 = 37 minutes

Exam, FS 2024 129

	Slide 1: Parallel Programming Exercise Session 4
	Slide 2: Schedule
	Slide 3: Post-Discussion Exercise 3
	Slide 4: Counter
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Task A: SequentialCounter
	Slide 15: Task A: SequentialCounter
	Slide 16: Task A: SequentialCounter
	Slide 17: Task A: SequentialCounter
	Slide 18: Task A: SequentialCounter
	Slide 19: Task A: SequentialCounter
	Slide 20: Task A: SequentialCounter
	Slide 21: Task A: SequentialCounter
	Slide 22: Task A: SequentialCounter
	Slide 23: Task A: SequentialCounter
	Slide 24: Task B: SynchronizedCounter
	Slide 25: Task B: SynchronizedCounter
	Slide 26: Task B: SynchronizedCounter
	Slide 27: Task B: SynchronizedCounter
	Slide 28: Task B: SynchronizedCounter
	Slide 29: Task B: SynchronizedCounter
	Slide 30: Task B: SynchronizedCounter
	Slide 31: Task C
	Slide 32: Task D
	Slide 33: Wait and Notify Recap
	Slide 34: Wait and Notify Recap
	Slide 35: Spurious Wake-ups
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: How to find the difference between notify vs notifyAll?
	Slide 51: When notify instead of notifyAll?
	Slide 52: Task D
	Slide 53: Task D
	Slide 54: Task D
	Slide 55: Task E: AtomicCounter
	Slide 56: Task E: AtomicCounter
	Slide 57: Task E: AtomicCounter
	Slide 58: Task E: AtomicCounter
	Slide 59: Post- vs Pre-Increment
	Slide 60: Task F: Atomic Variables vs Synchronized
	Slide 61: Task G
	Slide 62: Task G
	Slide 63: Theory Recap
	Slide 64: Exploiting Parallelism on a Single Core
	Slide 65: Pipelining: Main Concepts Recap
	Slide 66: Pipelining: Main Concepts Recap
	Slide 67: Pipelining: Main Concepts Recap
	Slide 68: Pipelining: Main Concepts Recap
	Slide 69: Instance vs. Stage
	Slide 70: Latency
	Slide 71
	Slide 72: Library
	Slide 73: Library
	Slide 74: Library
	Slide 75: Library
	Slide 76: Library
	Slide 77: Library
	Slide 78: Library
	Slide 79: Library
	Slide 80: Library
	Slide 81: Library
	Slide 82: Library
	Slide 83: Library
	Slide 84: Library
	Slide 85: Library
	Slide 86: Library
	Slide 87
	Slide 88
	Slide 89: Instruction-Level Parallelism
	Slide 90: Vectorization
	Slide 91: Vectorization
	Slide 92: Single Instruction Multiple Data (SIMD)
	Slide 93: Vector-Instructions (Assembly)
	Slide 94: When does this happen?
	Slide 95: More on those hardware optimizations
	Slide 96
	Slide 97
	Slide 98
	Slide 99: Divide and Conquer
	Slide 100: With threads
	Slide 101: With threads
	Slide 102: With threads
	Slide 103: What do we want?
	Slide 104: Executor-Service
	Slide 105: Executor-Service
	Slide 106: Executor-Service
	Slide 107: For what is Executor Service not suitable
	Slide 108: Fork-Join
	Slide 109: Fork-Join
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118: Gustafson‘s Law
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123: Exercise 4
	Slide 124: Task 1 - Pipelining
	Slide 125: Task 2 - Pipelining II
	Slide 126: Task 3 - Identify Potential Parallelization
	Slide 127: Past Exam Task
	Slide 128: Past Exam Task
	Slide 129: Past Exam Task
	Slide 133

