
Parallel Programming
Exercise Session 4
Spring 2025

Schedule

Post-Discussion Ex. 3

Theory

Pre-Discussion Ex. 4

Quiz

2

Post-Discussion
Exercise 3

3

Counter

Let’s count number of times a given event occurs

4

public interface Counter {

public void increment();

public int value();

}

// background threads

for (int i = 0; i < numIterations; i++) {

// perform some work

counter.increment();

}

// progress thread

while (isWorking) {

System.out.println(counter.value());

}

essentials

5

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

10 iterations each

number of times
increment() is called

value of the
shared Counter

essentials

6

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

number of times
increment() is called

value of the
shared Counter

essentials

7

0

Counter

1

Thread 1

0

Thread 2

0

Thread 3

number of times
increment() is called

value of the
shared Counter

essentials

8

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

essentials

9

10

Counter

10

Thread 1

0

Thread 2

0

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

essentials

10

15

Counter

10

Thread 1

0

Thread 2

5

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

essentials

11

25

Counter

10

Thread 1

10

Thread 2

5

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

essentials

12

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

essentials

13

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

Print

30

Main
value()

number of times
increment() is called

value of the
shared Counter

read the
Counter value

essentials

14

Task A: SequentialCounter

public class SequentialCounter implements Counter {

public void increment() {

??

}

public int value() {

??

}

}

essentials

15

Task A: SequentialCounter

public class SequentialCounter implements Counter {

private int c = 0;

public void increment() {

c++;

}

public int value() {

return c;

}

}

essentials

16

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Task A: SequentialCounter

public void increment() {

c++;

}

essentials

Task A: SequentialCounter

17

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting

access!

How is this

possible?

public void increment() {

c++;

}

essentials

Task A: SequentialCounter

18

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting

access!

How is this

possible?

public void increment() {

c++;

}

public void increment() {

c = c + 1;

}

essentials

Task A: SequentialCounter

19

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting

access!

How is this

possible?

public void increment() {

c++;

}

public void increment() {

c = c + 1;

}

1. load c → 0

assume c is initialized to value 0

essentials

Task A: SequentialCounter

20

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting

access!

How is this

possible?

public void increment() {

c++;

}

public void increment() {

c = c + 1;

}

1. load c → 0

2. load c → 0

assume c is initialized to value 0

essentials

Task A: SequentialCounter

21

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting

access!

How is this

possible?

public void increment() {

c++;

}

public void increment() {

c = c + 1;

}

2. load c → 0

1. load c → 0

3. c + 1 → 1
4. store c ← 1

assume c is initialized to value 0

essentials

Task A: SequentialCounter

22

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting

access!

How is this

possible?

public void increment() {

c++;

}

public void increment() {

c = c + 1;

}

1. load c → 0

3. c + 1 → 1
4. store c ← 1

2. load c → 0

5. c + 1 → 1
6. store c ← 1

assume c is initialized to value 0

essentials

Task A: SequentialCounter

23

1

Counter

1

Thread 1

Thread 2

0

Thread 3

1
conflicting

access!

How is this

possible?

public void increment() {

c++;

}

public void increment() {

c = c + 1;

}

1. load c → 0

3. c + 1 → 1
4. store c ← 1

2. load c → 0

5. c + 1 → 1
6. store c ← 1

note that
increment is
not atomic!

assume c is initialized to value 0

essentials

24

Task B: SynchronizedCounter

public class SynchronizedCounter implements Counter {

public void increment() {

??

}

public int value() {

??

}

}

essentials

25

Task B: SynchronizedCounter

public class SynchronizedCounter implements Counter {

private int c = 0;

public synchronized void increment() {

c++;

}

public synchronized int value() {

return c;

}

}

essentials

26

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Task B: SynchronizedCounter

synchronized void increment() {

c++;

}

essentials

27

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Task B: SynchronizedCounter

synchronized void increment() {

c++;

}

thread 1

synchronized void increment() {

c++;

}

Thread 2 tries to acquire lock on counter.

As the lock is already acquired by thread 1
the thread 2 suspends its execution.

essentials

28

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

Task B: SynchronizedCounter

synchronized void increment() {

c++;

}

thread 1

synchronized void increment() {

c++;

}

Thread 2 tries to acquire lock on counter.

As the lock is already acquired by thread 1
the thread 2 suspends its execution.

essentials

29

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

Task B: SynchronizedCounter

synchronized void increment() {

c++;

}

synchronized void increment() {

c++;

}

releases lock upon method exit

essentials

30

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

Task B: SynchronizedCounter

synchronized void increment() {

c++;

}

synchronized void increment() {

c++;

}

thread 2

essentials

Task C

Task: Print which thread performed the increment. Is there a
pattern?

Solution: No, since Java Threads interleave non-deterministic

31

Task D

● Implement a FairThreadCounter that ensures that different
threads increment the Counter in a round-robin fashion. That is,
two threads with ids 1 and 2 would increment the value in the
following order 1, 2, 1, 2, 1, 2, etc. You should implement the
scheduling using the wait and notify methods.

● (Optional) Extend your implementation to work with arbitrary
number of threads (instead of only 2) that increment the counter
in round-robin fashion.

32

essentials

Wait and Notify Recap

33

Object (lock) provides wait and notify methods

(any object is a lock)

wait: Thread must own object’s lock to call wait
thread releases lock and is added to “waiting list” for that object
thread waits until notify is called on the object

notify: Thread must own object’s lock to call notify

notify: Wake one (arbitrary) thread from object’s “waiting list”

notifyAll: Wake all threads

essentials

Wait and Notify Recap

34

Spurious wake-ups and notifyAll()
→ wait has to be in a while loop

essentials

Spurious Wake-ups

A waiting thread is woken up without being explicitly notified
through notify or notifyAll.

Reasons: various

• JVM Implementation: one thread is “nudged for housekeeping”

• Performance (OS dependent): to avoid unnecessary context
switches, to rebalance CPU load

Java does not prevent them. It expects you to handle them.
35

essentials

36

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Thread 1 must increment first!

essentials

37

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lockthread 2

essentials

38

0

Counter

0

Thread 1

Thread 2

0

Thread 3

lock failed

Suspended:
Thread 3

thread 2

0

essentials

39

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

check

thread 2

Blocked:
Thread 3

essentials

40

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

check

wait

Waiting:
Thread 2

Blocked:
Thread 3

essentials

41

0

Counter

0

Thread 1

Thread 2

0

Thread 3lock

thread 3

0

Waiting:
Thread 2

essentials

42

0

Counter

0

Thread 1

Thread 2

0

Thread 3lock

check

thread 3

0

Waiting:
Thread 2

essentials

43

0

Counter

0

Thread 1

Thread 2

0

Thread 3lock

check

wait

0

Waiting:
Thread 2
Thread 3

essentials

44

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

Waiting:
Thread 2
Thread 3

thread 1

essentials

45

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

check

Waiting:
Thread 2
Thread 3

thread 1

essentials

46

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock

check

increment

Waiting:
Thread 2
Thread 3

thread 1

essentials

47

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock

check

increment

notify or notifyAll?

thread 1

Waiting:
Thread 2
Thread 3

essentials

48

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock

check

increment

notifyAll

unlock

Waiting:
Thread 2
Thread 3

essentials

49

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

lock

check

increment

notifyAll

unlock

Waiting:
Thread 2
Thread 3

Which thread will be woken
up and acquire the lock?

Which thread will be woken up if
we use notify instead of notifyAll?

essentials

How to find the difference between notify vs notifyAll?

50

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/Object.html

essentials

When notify instead of notifyAll?

Use it if you don‘t care which thread will be notified.

Generally: use notifyAll to avoid edge cases and deadlocks

51

Task D

52

Task D

53

Task D

The same thing without wait and notify?

→ Busy waiting: while loop constantly checking (less efficient)

→ Some other complex structure: probably also not more efficient

54

55

Task E: AtomicCounter

public class AtomicCounter implements Counter {

public void increment() {

??

}

public int value() {

??

}

}

essentials

56

Task E: AtomicCounter

public class AtomicCounter implements Counter {

private AtomicInteger c = new AtomicInteger(0);

public void increment() {

c.incrementAndGet();

}

public int value() {

return c.get();

}

}

essentials

57

Task E: AtomicCounter

public class AtomicCounter implements Counter {

private AtomicInteger c = new AtomicInteger(0);

public void increment() {

c.incrementAndGet();

}

public int value() {

return c.get();

}

}

What is the difference?

int

c++;

AtomicInteger

c.incrementAndGet();

essentials

58

Task E: AtomicCounter

public class AtomicCounter implements Counter {

private AtomicInteger c = new AtomicInteger(0);

public void increment() {

c.incrementAndGet();

}

public int value() {

return c.get();

}

}

What is the difference?

int

c++;

AtomicInteger

c.getAndIncrement();

1. load c → 0

2. c + 1 → 1
3. store c ← 1

not atomic atomic

An operation is atomic if no other
thread can see it partly executed.
Atomic as in “appears indivisible”.

However, does not mean it’s
implemented as single instruction.

essentials

Post- vs Pre-Increment

59

details

Post-Increment

int i = 0;

AtomicInteger c = new AtomicInteger(0);

System.out.println(i++);

System.out.println(c.getAndIncrement());

int i = 0;

AtomicInteger c = new AtomicInteger(0);

System.out.println(++i);

System.out.println(c.incrementAndGet());

Pre-Increment

Task F: Atomic Variables vs Synchronized

Better performance: atomic variables

Why?

Atomic variables are non-blocking

60

Task G

Task: Create a thread that observes the values of the Counter
during the execution and prints them to the console. Make sure
that the thread is properly terminated once all the work is done.

61

Task G

62

Theory Recap

63

essentials

Exploiting Parallelism on a Single Core

Pipelining

Instruction-Level Parallelism (ILP)

Vectorization

64

Pipelining: Main Concepts Recap

Latency

Throughput

Balanced/Unbalanced Pipeline

65

essentials

Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation

(e.g., process a customer)

Throughput

Balanced/Unbalanced Pipeline

66

essentials

Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation

(e.g., process a customer)

Throughput
amount of work that can be done by a system in a given period of time

(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline

67

essentials

Pipelining: Main Concepts Recap

Latency
time needed to perform a given computation

(e.g., process a customer)

Throughput
amount of work that can be done by a system in a given period of time

(e.g., how many customers can be processed in one minute)

Balanced/Unbalanced Pipeline
a pipeline is balanced if each stage takes the same length of time

68

essentials

Instance vs. Stage

69

Instance

Stage

Latency

70

Generally, you can take the total time of the first instance.

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒(𝑓𝑖𝑟𝑠𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) = 𝑠𝑢𝑚(𝑡𝑖𝑚𝑒(𝑎𝑙𝑙_𝑠𝑡𝑎𝑔𝑒𝑠))

If not constant, you can calculate it for the 𝑛-th instance.
𝑙𝑎𝑡𝑒𝑛𝑐𝑦
= 𝑡𝑜𝑡𝑎𝑙_𝑡𝑖𝑚𝑒(𝑓𝑖𝑟𝑠𝑡_𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) + (max 𝑡𝑖𝑚𝑒_𝑠𝑡𝑎𝑔𝑒 − 𝑡𝑖𝑚𝑒 𝑓𝑖𝑟𝑠𝑡_𝑠𝑡𝑎𝑔𝑒) ⋅ (𝑛 − 1)

71https://polybox.ethz.ch/index.php/s/KwIm2IqvWYP79UB?path=%2FSkript#pdfviewer

Library

72

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

At UZH the law students have been tasked with writing a legal essay about the philosophy
of Swiss law. In order to write the essay, each student needs to read four different books
on the subject, denoted as A, B, C and D (in this order).

This exercise is created by Lasse Meinen and is part of the unofficial VIS
Prüfungsvorbereitungsworkshop Scripts available at:

https://vis.ethz.ch/de/services/pvw-scripts/

essentials

https://vis.ethz.ch/de/services/pvw-scripts/

Library

73

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 1: Let’s assume all law students are a bit too competitive and don’t return any
books before they’re done reading all of them. How long will it take for 4 students until all
of them have started writing their essays?

Over at UZH the law students have been tasked with writing a legal essay about the
philosophy of Swiss law. In order to write the essay, each student needs to read four
different books on the subject, denoted as A, B, C and D (in this order).

essentials

Library

74

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 1: Let’s assume all law students are a bit too competitive and don’t return any
books before they’re done reading all of them. How long will it take for 4 students until all
of them have started writing their essays?

student 1

student 2

student 3

student 4

Total: 4 * 280 min

Latency: 280 min

Throughput: 1 per 280 min

essentials

Library

75

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

Draw diagrams, as seen before

essentials

Library

76

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

essentials

Library

77

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

essentials

Library

78

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

For this pipeline, latency makes sense only if asked
for a particular student, not for the whole pipeline.

essentials

Library

79

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?Balanced?

essentials

Library

80

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student

per 160 minutes

Balanced?

With lead in

(fixed number of students)

essentials

Library

81

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

Question 2: The library introduces a ”one book at a time” policy, i.e., the students have to
return a book before they can start on the next one. How long will it now take for 4
students until all of them have started writing their essays?

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student

per 120 minutes

Balanced?

Without lead in

(indefinite number of students)

essentials

Library

82

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book A takes 80 minutes 3) Reading book C takes 120 minutes

2) Reading book B takes 40 minutes 4) Reading book D takes 40 minutes

student 1

student 2

student 3

student 4

Latency?

280 min

320 min

360 min

400 min

Throughput?

1 student

per 160 minutes

Balanced?

No

The pipeline is not balanced
since the stages have different length

essentials

Library

83

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book E takes 120 minutes 3) Reading book G takes 120 minutes

2) Reading book F takes 80 minutes 4) Reading book H takes 40 minutes

Question 3: At UZH the law students now need to read the books E, F, G, H, in this
particular order. Let’s assume we still have the ”one book at a time” policy.

essentials

Draw diagrams, as seen before

Library

84

Every student takes the exact same amount of time to read a book, concretely:

1) Reading book E takes 120 minutes 3) Reading book G takes 120 minutes

2) Reading book F takes 80 minutes 4) Reading book H takes 40 minutes

student 1

student 2

student 3

student 4

Latency?

360 min

360 min

360 min

360 min

Throughput?

1 student

per 180 minutes

Balanced?

No

The pipeline is not balanced since the stages have
different length. The latency is constant.

essentials

Library

85

Every student takes the exact same amount of time to read a summary, concretely:

1) Reading summary E takes 40 minutes 3) Reading summary G takes 40 minutes

2) Reading summary F takes 40 minutes 4) Reading summary H takes 40 minutes

Question 4: A motivated student has written summaries for books E, F and G and shared
them with the library. As our four students would like to enjoy some sun someday, they
decided to read the summaries instead. Every summary takes exactly 40 minutes for each
student.

essentials

Draw diagrams, as seen before

Library

86

Every student takes the exact same amount of time to read a summary, concretely:

1) Reading summary E takes 40 minutes 3) Reading summary G takes 40 minutes

2) Reading summary F takes 40 minutes 4) Reading summary H takes 40 minutes

student 1

student 2

student 3

student 4

Latency?

160 min

160 min

160 min

160 min

Throughput?

1 student

per 70 minutes

Balanced?

Yes

The pipeline is balanced since the stages have the
same length. The latency is constant

essentials

87

88

Instruction-Level Parallelism

How do we get parallelism out of a program on a single core?

→ Special hardware support

Idea: execute independent instructions in parallel

Independent instructions: result of one isn‘t input of the other

89

operations on vector-like data like arrays

Independent operations of the same type

Vectorization

90

Vectorization

91

Can easily parallelize the

loop:

All interations are independent of

each other

Each thread works on their part

(like in assignment 2)

How about a single core

approach (Vectorization)?

→ SIMD

Single Instruction Multiple Data (SIMD)

92

Vector-Instructions (Assembly)

Combine multiple instructions into a single vector-instruction
93

When does this happen?

Either compiler does it for us (auto-vectorization)

or

Programmer specifies it via vector-instructions

… given that the hardware supports it

(basically all modern hardware does)

94

More on those hardware optimizations

Digital Design and Computer Architecture

SPCA

95

96

custom

97

custom

98

custom

Divide and Conquer

99

With threads

100

For large arrays: Java.lang.OutOfMemoryError: unable to create new native thread

With threads

101

For large arrays: Java.lang.OutOfMemoryError: unable to create new native thread

Sequential cutoff: if (size <= cutoff) then calculate that part sequentially

With threads

102

For large arrays: Java.lang.OutOfMemoryError: unable to create new native thread

Sequential cutoff: if (size <= cutoff) then calculate that part sequentially

t2.run();

What do we want?

Partition the work into desirable sizes without running out of
memory.

Solution: Create Tasks and let the scheduler deside when to map
each task to which thread (with a fixed thread count)

103

Executor-Service

104

Can deadlock, if no threads to execute task

Executor-Service

ex.submit(Runnable task)

Submits a Runnable object for execution and returns a Future
object representing that task.

ex.submit(Callable<T> task)

Submits a value-returning task for execution and returns a Future
object representing the pending results of the task.

ex.shutdown()

Previously submitted tasks are executed, but no new tasks will be
accepted.

105

Executor-Service

106

For what is Executor Service not suitable

Recursive problems where deep structures require waiting for
partial results

Well-suited for flat structures or tasks that can run independently
in parallel

107

Fork-Join

Fork/join framework solves the deadlock problem of
ExecutorService

Designed for recursive tasks

108

Fork-Join

109

110

custom

111

custom

112

custom

=

113

custom

114

custom

115

custom

116

custom

117

custom

Gustafson‘s Law

118

custom

119

custom

120

custom

121

custom

122

custom

Exercise 4

123

essentials

Bob, Mary, John and Alice

Task 1 - Pipelining

124

50 min 90 min 15 min

a) Laundry time using
sequential order

b) Design a strategy with
better laundry time

c) How would the laundry
time improve if they
bought a new dryer?

essentials

Task 2 - Pipelining II

Assume a processor that can each cycle issue either:
● one multiplication instruction with latency 6 cycles
● one addition instruction with latency 3 cycles

How many cycles are required to execute following loops?

125

for (int i = 0; i < data.length; i += 4) {

j = i + 1;

k = i + 2;

l = i + 3;

data[i] = data[i] * data[i];

data[j] = data[j] * data[j];

data[k] = data[k] * data[k];

data[l] = data[l] * data[l];

}

for (int i = 0; i < data.length; i += 2) {

j = i + 1;

data[i] = data[i] * data[i];

data[j] = data[j] * data[j];

}

for (int i = 0; i < data.length; i++) {

data[i] = data[i] * data[i];

}

essentials

Task 3 - Identify Potential Parallelization

Can we parallelize following two loops using parallel for construct?

126

for (int i=1; i<size; i++) { // for loop: i from 1 to (size-1)

if (data[i-1] > 0) // If the previous value is positive

data[i] = (-1)*data[i]; // change the sign of this value

} // end for loop

for (int i=0; i<size; i++) { // for loop: i from 0 to (size-1)

data[i] = Math.sin(data[i]); // calculate sin() of the value

} // end for loop

essentials

127

essentials

Past Exam Task

Exam, FS 2024

128

essentials

Past Exam Task

Exam, FS 2024

129

essentials

Past Exam Task

Exam, FS 2024

	Slide 1: Parallel Programming Exercise Session 4
	Slide 2: Schedule
	Slide 3: Post-Discussion Exercise 3
	Slide 4: Counter
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Task A: SequentialCounter
	Slide 15: Task A: SequentialCounter
	Slide 16: Task A: SequentialCounter
	Slide 17: Task A: SequentialCounter
	Slide 18: Task A: SequentialCounter
	Slide 19: Task A: SequentialCounter
	Slide 20: Task A: SequentialCounter
	Slide 21: Task A: SequentialCounter
	Slide 22: Task A: SequentialCounter
	Slide 23: Task A: SequentialCounter
	Slide 24: Task B: SynchronizedCounter
	Slide 25: Task B: SynchronizedCounter
	Slide 26: Task B: SynchronizedCounter
	Slide 27: Task B: SynchronizedCounter
	Slide 28: Task B: SynchronizedCounter
	Slide 29: Task B: SynchronizedCounter
	Slide 30: Task B: SynchronizedCounter
	Slide 31: Task C
	Slide 32: Task D
	Slide 33: Wait and Notify Recap
	Slide 34: Wait and Notify Recap
	Slide 35: Spurious Wake-ups
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: How to find the difference between notify vs notifyAll?
	Slide 51: When notify instead of notifyAll?
	Slide 52: Task D
	Slide 53: Task D
	Slide 54: Task D
	Slide 55: Task E: AtomicCounter
	Slide 56: Task E: AtomicCounter
	Slide 57: Task E: AtomicCounter
	Slide 58: Task E: AtomicCounter
	Slide 59: Post- vs Pre-Increment
	Slide 60: Task F: Atomic Variables vs Synchronized
	Slide 61: Task G
	Slide 62: Task G
	Slide 63: Theory Recap
	Slide 64: Exploiting Parallelism on a Single Core
	Slide 65: Pipelining: Main Concepts Recap
	Slide 66: Pipelining: Main Concepts Recap
	Slide 67: Pipelining: Main Concepts Recap
	Slide 68: Pipelining: Main Concepts Recap
	Slide 69: Instance vs. Stage
	Slide 70: Latency
	Slide 71
	Slide 72: Library
	Slide 73: Library
	Slide 74: Library
	Slide 75: Library
	Slide 76: Library
	Slide 77: Library
	Slide 78: Library
	Slide 79: Library
	Slide 80: Library
	Slide 81: Library
	Slide 82: Library
	Slide 83: Library
	Slide 84: Library
	Slide 85: Library
	Slide 86: Library
	Slide 87
	Slide 88
	Slide 89: Instruction-Level Parallelism
	Slide 90: Vectorization
	Slide 91: Vectorization
	Slide 92: Single Instruction Multiple Data (SIMD)
	Slide 93: Vector-Instructions (Assembly)
	Slide 94: When does this happen?
	Slide 95: More on those hardware optimizations
	Slide 96
	Slide 97
	Slide 98
	Slide 99: Divide and Conquer
	Slide 100: With threads
	Slide 101: With threads
	Slide 102: With threads
	Slide 103: What do we want?
	Slide 104: Executor-Service
	Slide 105: Executor-Service
	Slide 106: Executor-Service
	Slide 107: For what is Executor Service not suitable
	Slide 108: Fork-Join
	Slide 109: Fork-Join
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118: Gustafson‘s Law
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123: Exercise 4
	Slide 124: Task 1 - Pipelining
	Slide 125: Task 2 - Pipelining II
	Slide 126: Task 3 - Identify Potential Parallelization
	Slide 127: Past Exam Task
	Slide 128: Past Exam Task
	Slide 129: Past Exam Task
	Slide 133

