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Today

Post-Discussion Exercise 2

Theory Recap

Quiz

Pre-Discussion Exercise 3 
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Post-Discussion 
Exercise 2

3



Task A
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Task A
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What happens if we change

t.start() to t.run()?



Task A
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Task B

Run computePrimeFactors: main thread vs. single other thread

- There should not be any noticeable difference

What about Overhead? 

- Overhead of a single Thread is not significant

- Use a lot of threads→ Overhead sums up→ Overhead takes up
noticeable amount
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Task C: Thread with no Task
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Task C: Thread with no Task
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Task D
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Task D
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Task D: PartitionData

In real world: use existing libraries. well tested, concise, fast (e.g. 
parallel streams for Java)

Think about edge cases: What if more Threads than values?
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Task E: Sharing Data Across Threads

demo SharedData

(need this for E)
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Task F: Execution Speed-Up
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Experiment done on 

CPU with 16 cores 
available.



Task F: Execution Speed-Up

Small arrays: increasing number of threads does not improve 
performance due to thread management overhead.

Large arrays: speed-up converges with a certain number of 
threads.

At very high thread counts, overhead dominates, causing 
execution time to increase.
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Theory Recap
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Counter

Let’s count the number of times a given event occurs

17

public interface Counter {

public void increment();

public int value();

}



Counter

Let’s count the number of times a given event occurs
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public interface Counter {

public void increment();

public int value();

}

// background threads

for (int i = 0; i < numIterations; i++) {

// perform some work

counter.increment();

}

// progress thread

while (isWorking) {

System.out.println(counter.value());

}
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0
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0
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0
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0

Thread 3

10 iterations each

number of times 
increment() is called

value of the 
shared Counter
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Counter
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value of the 
shared Counter
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1

Counter
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increment()

number of times 
increment() is called

value of the 
shared Counter
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10

Counter
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25

Counter
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30

Counter

10

Thread 1
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increment()

number of times 
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shared Counter
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30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

Print 

30

Main
value()

number of times 
increment() is called

value of the 
shared Counter

read the 
Counter value



Counter

Why will what we just saw probably not work?
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essentials



Remember: Data Races

public class Counter { 

int count = 0; 

public void increment() { 

count++;

}

}

29

Assume we have two threads executing increment() n-times

concurrently.

custom



Data Race
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Thread A

Read count == 0

tmp = count + 1

count = tmp

custom

count == 0

Thread B

Read count == 0

tmp = count + 1

count = tmp

count == 1



Synchronization 
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➔Every reference type contains a lock inherited from the Object 
class

➔Primitive fields can be locked only via their enclosing objects

➔Locking arrays does not lock their elements

➔A lock is automatically acquired when entering and released 
when exiting a synchronized block

➔Locks will be covered in more detail later in the course

essentials



Synchronization 
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➔Synchronized method locks the object owning the method

➔Synchronized keyword obtains a lock on the parameter object

➔A thread can obtain multiple locks (by nesting the synchronized blocks)

foo.xMethod() //lock on foo

synchronized (bar) { … } //lock on bar

essentials



Using `synchronized`

public class Counter { 

int count = 0; 

public synchronized void increment() { 

count++;

}

}
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Now only one thread at a time can enter the increment() method ☺

custom



What exactly is a lock/monitor?
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Counter C

int count = 0; 

attributes

methods

synchronized increment() { 

count++;

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

custom



What exactly is a lock/monitor?
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Counter C

int count = 0; 

attributes

methods

synchronized increment() { 

count++;

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

increment()

custom



What exactly is a lock/monitor?
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Counter C

int count = 0; 

attributes

methods

synchronized increment() { 

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

custom



What exactly is a lock/monitor?
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Counter C

int count = 0; 

attributes

methods

synchronized increment() { 

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

increment()

custom



What exactly is a lock/monitor?
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Counter C

int count = 0; 

attributes

methods

synchronized increment() { 

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

BLOCKED

custom



Remember: Java Thread State Model
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New

RunningRunnable

Terminated

run() terminates

start()

active state

Waiting for CPU Getting CPU
Blocked

“not runnable“

Waiting

Timed waiting

Waiting for notification

Notification acquired



What exactly is a lock/monitor?
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Counter C

int count = 0; 

attributes

methods

synchronized increment() { 

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

BLOCKED

increment()

custom



What exactly is a lock/monitor?
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Counter C

int count = 0; 

attributes

methods

synchronized increment() { 

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

BLOCKED

BLOCKED

custom



What exactly is a lock/monitor?
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Counter C

int count = 0; 

attributes

methods

synchronized increment() { 

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

DONE!

BLOCKED

BLOCKED

custom



What exactly is a lock/monitor?
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Counter C

int count = 0; 

attributes

methods

synchronized increment() { 

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

DONE!

BLOCKED

BLOCKED

Counter C

custom



What exactly is a lock/monitor?
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Counter C

int count = 0; 

attributes

methods

synchronized increment() { 

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

DONE!

BLOCKED

count++

Counter C

THIS LOCK IS SPECIFIC TO THE OBJECT!

custom



Counter D

int count = 0; 

attributes

methods

synchronized increment() { 

count++;

}

Counter D = new Counter()

Counter D

Locks are specific to Object/Class
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Counter C

int count = 0; 

attributes

methods

synchronized increment() { 

count++;

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

custom

Counter CLASS

static attributes static methods

static int var = X; static void func()… Counter CLASS

class Counter {}



Counter D

int count = 0; 

attributes

methods

void incrementC() { 

synchronize (C) {

...

}

}

Counter D = new Counter()

Counter D

Locks are specific to Object/Class
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Counter C

int count = 0; 

attributes

methods

void incrementD() { 

synchronize (D) {

...

}

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

custom



Counter D

int count = 0; 

attributes

methods

void incrementC() { 

synchronize (C) {

...

}

}

Counter D = new Counter()

Counter D

Locks are specific to Object/Class
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Counter C

int count = 0; 

attributes

methods

void incrementD() { 

synchronize (D) {

...

}

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

custom

incrementC()



Counter D

int count = 0; 

attributes

methods

void incrementC() { 

synchronize (C) {

...

}

}

Counter D = new Counter()

Counter D

Locks are specific to Object/Class
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Counter C

int count = 0; 

attributes

methods

void incrementD() { 

synchronize (D) {

...

}

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

custom

count++

Counter C



Bad Practices With Synchronization

Do NOT synchronize on:

• Literals

• Boxed Primitives
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custom



Good or not good?
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custom



Java String Pool
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Java Heap

String Pool

String a = “PPROG24”

String b = “PPROG24”

String c = “pprog24”

String d = new String(“PPROG24”)

“PPROG24”

“pprog24”

“PPROG24”

String e = new String(“PPROG24”)
“PPROG24”

custom



Good or not good?
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custom



Good or not good?
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custom



Good or not good?
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Assume this computation

takes *a lot* of time 

custom



Good or not good?
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Try keeping your critical 

section as small as possible!

custom



Wait and Notify Recap
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Object (lock) provides wait and notify methods

(any object is a lock)

wait: Thread must own object’s lock to call wait
thread releases lock and is added to “waiting list” for that object
thread waits until notify is called on the object

notify: Thread must own object’s lock to call notify

notify: Wake one (arbitrary) thread from object’s “waiting list”

notifyAll: Wake all threads

essentials



But… why?
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Producer-Consumer Problem
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Generating Data

Processing Data

Buffer

custom



The Buffer
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The Producer
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The Consumer

61

Where is the problem?



The Consumer

62

Bad Interleaving!



How about now?
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How about now?
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Solution? Use wait/notify!
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Wait and Notify Recap

66

What is the difference? Issues?

essentials



Wait and Notify Recap
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Spurious wake-ups and notifyAll()
→ wait has to be in a while loop

essentials



Wait and Notify Recap
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Reentrant

Java locks are reentrant

A thread can hold a lock more than once

Also have to release multiple times

69

details



Reentrant

70

Counter C

int count = 0; 

attributes

methods

synchronized increment() { 

addOne();

}

synchronized addOne() { 

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

increment()

custom



Past Exam Task
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essentials

Rep. Exam, FS 2023



Past Exam Task
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essentials

Rep. Exam, FS 2023



Past Exam Task
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essentials

Rep. Exam, FS 2023



Past Exam Task
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essentials

Rep. Exam, FS 2023





Pre-Discussion 
Exercise 3
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Counter

There are many threads accessing the counter at the same time. 
How should we implement it such that there are no conflicts?
You will try different solutions including:

➔Task A: SequentialCounter

➔Task B: SynchronizedCounter

➔Task E (optional): AtomicCounter

81



Task A – Sequential counter

➔Implement a sequential version of the Counter in 
SequentialCounter class that does not use any synchronization.

➔In taskASequential we provide a method that runs a single thread
which increments the counter. Inspect the code and understand
how it works.

➔Verify that the SequentialCounter works properly when used
with a single thread (the test testSequentialCounter should pass).
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Task A – Parallel counter

➔Run the code in taskAParallel which creates several threads that 
all try to increment the counter at the same time. 

➔Will this work? What will happen?
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essentials



Task B – Synchronized counter

➔Implement a different thread safe version of the Counter in 
SynchronizedCounter. In this version use the standard primitive 
type int but synchronize the access to the variable by inserting 
synchronized blocks. 

➔Run the code in taskB.
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Task C

Whenever the Counter is incremented, keep track which thread 
performed the increment (you can print out the thread-id to the 
console). Observe how the threads are scheduled and discuss the 
factors that might influence this behavior.
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essentials



Task D

➔Implement a FairThreadCounter that ensures that different 
threads increment the Counter in a round-robin fashion. In 
round-robin scheduling the threads perform the increments in 
circular order. That is, two threads with ids 1 and 2 would 
increment the value in the following order 1, 2, 1, 2, 1, 2, etc. 

➔You should implement the scheduling using the wait and notify
methods. 

➔Can you think of implementation that does not use wait and 
notify methods?
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essentials
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0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Thread 1 must increment first!

essentials
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0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

Thread 1 must increment first!

essentials
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Counter

0

Thread 1

Thread 2

0

Thread 3

lock failed

Blocked:
Thread 3

Thread 1 must increment first!

0

lock

0

essentials
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0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

check

Blocked:
Thread 3

Thread 1 must increment first!

essentials
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0

Counter

0

Thread 1

0

Thread 2

Thread 3

lock

check

wait

Waiting:
Thread 2

Thread 1 must increment first!

Blocked:
Thread 3

0

essentials
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0

Counter

0

Thread 1

0

Thread 2

Thread 3

Waiting:
Thread 2

lockThread 1 must increment first!

Blocked:
Thread 3

0
Both Thead 1 and Thread 3 could obtain lock. 

Let’s assume Thread 1 succeeds.

essentials
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0

Counter

0
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Thread 3

Waiting:
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Thread 1 must increment first!

Blocked:
Thread 3

0

essentials
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1

Counter

1

Thread 1
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Thread 2
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check

increment

Thread 1 must increment first!

Blocked:
Thread 3

0

essentials
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1

Counter

1

Thread 1

0

Thread 2

Thread 3

lock

check

increment

notify

Thread 1 must increment first!

Blocked:
Thread 3

0

essentials
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1

Counter

1

Thread 1

0

Thread 2

Thread 3

lock

check

increment

notifyAll

unlock

Thread 1 must increment first!

Blocked:
Thread 3

0

essentials



Task E – Atomic counter

Implement a thread safe version of the Counter in AtomicCounter. 
In this version we will use an implementation of the int primitive 
value, called AtomicInteger, that can be safely used from multiple 
threads. 

97



Atomic Variables
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➔Set of classes providing implementation of atomic variables in 
Java, e.g., AtomicInteger, AtomicLong, ...

➔An operation is atomic if no other thread can see it partially 
executed.  Atomic as in “appears indivisible”.

➔ Implemented using special hardware primitives (instructions) for 
concurrency. Will be covered in detail later in the course.

details

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/atomic/AtomicInteger.html


Task F – Atomic vs Synchronized counter

Experimentally compare the AtomicCounter and 
SynchronizedCounter implementations by measuring which one is 
faster. Observe the differences in the CPU load between the two 
versions. Can you explain what is the cause of different 
performance characteristics?

- Vary the load per thread

- Vary the number of threads

99

essentials



Task G

Implement a thread that measures execution progress. That is, 
create a thread that observes the values of the Counter during the 
execution and prints them to the console. Make sure that the 
thread is properly terminated once all the work is done 
[thread.interrupt()].

100
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10

Counter
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Thread 1
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Thread 2

0

Thread 3
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Printer

essentials
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essentials
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essentials
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essentials
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essentials



106

30
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increment()
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essentials
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30

Counter
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Thread 1

10

Thread 2

10

Thread 3

Print 

30!

Printer value()

essentials



Homework Assignments

I highly recommend doing the homework assignments

→ Check and deepen your knowledge

→ Feedback: Push to GitLab and then message me

108
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