
Parallel Programming
Exercise Session 3
Spring 2025

Today

Post-Discussion Exercise 2

Theory Recap

Quiz

Pre-Discussion Exercise 3

2

Post-Discussion
Exercise 2

3

Task A

4

Task A

5

What happens if we change

t.start() to t.run()?

Task A

6

Task B

Run computePrimeFactors: main thread vs. single other thread

- There should not be any noticeable difference

What about Overhead?

- Overhead of a single Thread is not significant

- Use a lot of threads→ Overhead sums up→ Overhead takes up
noticeable amount

7

Task C: Thread with no Task

8

Task C: Thread with no Task

9

Task D

10

Task D

11

Task D: PartitionData

In real world: use existing libraries. well tested, concise, fast (e.g.
parallel streams for Java)

Think about edge cases: What if more Threads than values?

12

Task E: Sharing Data Across Threads

demo SharedData

(need this for E)

13

Task F: Execution Speed-Up

14

Experiment done on

CPU with 16 cores
available.

Task F: Execution Speed-Up

Small arrays: increasing number of threads does not improve
performance due to thread management overhead.

Large arrays: speed-up converges with a certain number of
threads.

At very high thread counts, overhead dominates, causing
execution time to increase.

15

Theory Recap

16

Counter

Let’s count the number of times a given event occurs

17

public interface Counter {

public void increment();

public int value();

}

Counter

Let’s count the number of times a given event occurs

18

public interface Counter {

public void increment();

public int value();

}

// background threads

for (int i = 0; i < numIterations; i++) {

// perform some work

counter.increment();

}

// progress thread

while (isWorking) {

System.out.println(counter.value());

}

19

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

10 iterations each

number of times
increment() is called

value of the
shared Counter

20

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

number of times
increment() is called

value of the
shared Counter

21

0

Counter

1

Thread 1

0

Thread 2

0

Thread 3

number of times
increment() is called

value of the
shared Counter

22

1

Counter

1

Thread 1

0

Thread 2

0

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

23

10

Counter

10

Thread 1

0

Thread 2

0

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

24

15

Counter

10

Thread 1

0

Thread 2

5

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

25

25

Counter

10

Thread 1

10

Thread 2

5

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

26

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

increment()

number of times
increment() is called

value of the
shared Counter

27

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

Print

30

Main
value()

number of times
increment() is called

value of the
shared Counter

read the
Counter value

Counter

Why will what we just saw probably not work?

28

essentials

Remember: Data Races

public class Counter {

int count = 0;

public void increment() {

count++;

}

}

29

Assume we have two threads executing increment() n-times

concurrently.

custom

Data Race

30

Thread A

Read count == 0

tmp = count + 1

count = tmp

custom

count == 0

Thread B

Read count == 0

tmp = count + 1

count = tmp

count == 1

Synchronization

31

➔Every reference type contains a lock inherited from the Object
class

➔Primitive fields can be locked only via their enclosing objects

➔Locking arrays does not lock their elements

➔A lock is automatically acquired when entering and released
when exiting a synchronized block

➔Locks will be covered in more detail later in the course

essentials

Synchronization

32

➔Synchronized method locks the object owning the method

➔Synchronized keyword obtains a lock on the parameter object

➔A thread can obtain multiple locks (by nesting the synchronized blocks)

foo.xMethod() //lock on foo

synchronized (bar) { … } //lock on bar

essentials

Using `synchronized`

public class Counter {

int count = 0;

public synchronized void increment() {

count++;

}

}

33

Now only one thread at a time can enter the increment() method ☺

custom

What exactly is a lock/monitor?

34

Counter C

int count = 0;

attributes

methods

synchronized increment() {

count++;

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

custom

What exactly is a lock/monitor?

35

Counter C

int count = 0;

attributes

methods

synchronized increment() {

count++;

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

increment()

custom

What exactly is a lock/monitor?

36

Counter C

int count = 0;

attributes

methods

synchronized increment() {

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

custom

What exactly is a lock/monitor?

37

Counter C

int count = 0;

attributes

methods

synchronized increment() {

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

increment()

custom

What exactly is a lock/monitor?

38

Counter C

int count = 0;

attributes

methods

synchronized increment() {

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

BLOCKED

custom

Remember: Java Thread State Model

39

New

RunningRunnable

Terminated

run() terminates

start()

active state

Waiting for CPU Getting CPU
Blocked

“not runnable“

Waiting

Timed waiting

Waiting for notification

Notification acquired

What exactly is a lock/monitor?

40

Counter C

int count = 0;

attributes

methods

synchronized increment() {

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

BLOCKED

increment()

custom

What exactly is a lock/monitor?

41

Counter C

int count = 0;

attributes

methods

synchronized increment() {

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

count++

BLOCKED

BLOCKED

custom

What exactly is a lock/monitor?

42

Counter C

int count = 0;

attributes

methods

synchronized increment() {

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

Counter C

DONE!

BLOCKED

BLOCKED

custom

What exactly is a lock/monitor?

43

Counter C

int count = 0;

attributes

methods

synchronized increment() {

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

DONE!

BLOCKED

BLOCKED

Counter C

custom

What exactly is a lock/monitor?

44

Counter C

int count = 0;

attributes

methods

synchronized increment() {

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

DONE!

BLOCKED

count++

Counter C

THIS LOCK IS SPECIFIC TO THE OBJECT!

custom

Counter D

int count = 0;

attributes

methods

synchronized increment() {

count++;

}

Counter D = new Counter()

Counter D

Locks are specific to Object/Class

45

Counter C

int count = 0;

attributes

methods

synchronized increment() {

count++;

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

custom

Counter CLASS

static attributes static methods

static int var = X; static void func()… Counter CLASS

class Counter {}

Counter D

int count = 0;

attributes

methods

void incrementC() {

synchronize (C) {

...

}

}

Counter D = new Counter()

Counter D

Locks are specific to Object/Class

46

Counter C

int count = 0;

attributes

methods

void incrementD() {

synchronize (D) {

...

}

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

custom

Counter D

int count = 0;

attributes

methods

void incrementC() {

synchronize (C) {

...

}

}

Counter D = new Counter()

Counter D

Locks are specific to Object/Class

47

Counter C

int count = 0;

attributes

methods

void incrementD() {

synchronize (D) {

...

}

}

Counter C = new Counter()

Counter C

Thread 1

Thread 2

Thread 3

custom

incrementC()

Counter D

int count = 0;

attributes

methods

void incrementC() {

synchronize (C) {

...

}

}

Counter D = new Counter()

Counter D

Locks are specific to Object/Class

48

Counter C

int count = 0;

attributes

methods

void incrementD() {

synchronize (D) {

...

}

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

custom

count++

Counter C

Bad Practices With Synchronization

Do NOT synchronize on:

• Literals

• Boxed Primitives

49

custom

Good or not good?

50

custom

Java String Pool

51

Java Heap

String Pool

String a = “PPROG24”

String b = “PPROG24”

String c = “pprog24”

String d = new String(“PPROG24”)

“PPROG24”

“pprog24”

“PPROG24”

String e = new String(“PPROG24”)
“PPROG24”

custom

Good or not good?

52

custom

Good or not good?

53

custom

Good or not good?

54

Assume this computation

takes *a lot* of time

custom

Good or not good?

55

Try keeping your critical

section as small as possible!

custom

Wait and Notify Recap

56

Object (lock) provides wait and notify methods

(any object is a lock)

wait: Thread must own object’s lock to call wait
thread releases lock and is added to “waiting list” for that object
thread waits until notify is called on the object

notify: Thread must own object’s lock to call notify

notify: Wake one (arbitrary) thread from object’s “waiting list”

notifyAll: Wake all threads

essentials

But… why?

57

Producer-Consumer Problem

58

Generating Data

Processing Data

Buffer

custom

The Buffer

59

The Producer

60

The Consumer

61

Where is the problem?

The Consumer

62

Bad Interleaving!

How about now?

63

How about now?

64

Solution? Use wait/notify!

65

Wait and Notify Recap

66

What is the difference? Issues?

essentials

Wait and Notify Recap

67

Spurious wake-ups and notifyAll()
→ wait has to be in a while loop

essentials

Wait and Notify Recap

68

Reentrant

Java locks are reentrant

A thread can hold a lock more than once

Also have to release multiple times

69

details

Reentrant

70

Counter C

int count = 0;

attributes

methods

synchronized increment() {

addOne();

}

synchronized addOne() {

count++;

}

Counter C = new Counter()

Thread 1

Thread 2

Thread 3

increment()

custom

Past Exam Task

75

essentials

Rep. Exam, FS 2023

Past Exam Task

76

essentials

Rep. Exam, FS 2023

Past Exam Task

77

essentials

Rep. Exam, FS 2023

Past Exam Task

78

essentials

Rep. Exam, FS 2023

Pre-Discussion
Exercise 3

80

Counter

There are many threads accessing the counter at the same time.
How should we implement it such that there are no conflicts?
You will try different solutions including:

➔Task A: SequentialCounter

➔Task B: SynchronizedCounter

➔Task E (optional): AtomicCounter

81

Task A – Sequential counter

➔Implement a sequential version of the Counter in
SequentialCounter class that does not use any synchronization.

➔In taskASequential we provide a method that runs a single thread
which increments the counter. Inspect the code and understand
how it works.

➔Verify that the SequentialCounter works properly when used
with a single thread (the test testSequentialCounter should pass).

82

Task A – Parallel counter

➔Run the code in taskAParallel which creates several threads that
all try to increment the counter at the same time.

➔Will this work? What will happen?

83

essentials

Task B – Synchronized counter

➔Implement a different thread safe version of the Counter in
SynchronizedCounter. In this version use the standard primitive
type int but synchronize the access to the variable by inserting
synchronized blocks.

➔Run the code in taskB.

84

Task C

Whenever the Counter is incremented, keep track which thread
performed the increment (you can print out the thread-id to the
console). Observe how the threads are scheduled and discuss the
factors that might influence this behavior.

85

essentials

Task D

➔Implement a FairThreadCounter that ensures that different
threads increment the Counter in a round-robin fashion. In
round-robin scheduling the threads perform the increments in
circular order. That is, two threads with ids 1 and 2 would
increment the value in the following order 1, 2, 1, 2, 1, 2, etc.

➔You should implement the scheduling using the wait and notify
methods.

➔Can you think of implementation that does not use wait and
notify methods?

86

essentials

87

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

Thread 1 must increment first!

essentials

88

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

Thread 1 must increment first!

essentials

89

Counter

0

Thread 1

Thread 2

0

Thread 3

lock failed

Blocked:
Thread 3

Thread 1 must increment first!

0

lock

0

essentials

90

0

Counter

0

Thread 1

0

Thread 2

0

Thread 3

lock

check

Blocked:
Thread 3

Thread 1 must increment first!

essentials

91

0

Counter

0

Thread 1

0

Thread 2

Thread 3

lock

check

wait

Waiting:
Thread 2

Thread 1 must increment first!

Blocked:
Thread 3

0

essentials

92

0

Counter

0

Thread 1

0

Thread 2

Thread 3

Waiting:
Thread 2

lockThread 1 must increment first!

Blocked:
Thread 3

0
Both Thead 1 and Thread 3 could obtain lock.

Let’s assume Thread 1 succeeds.

essentials

93

0

Counter

0

Thread 1

0

Thread 2

Thread 3

Waiting:
Thread 2

lock

check

Thread 1 must increment first!

Blocked:
Thread 3

0

essentials

94

1

Counter

1

Thread 1

0

Thread 2

Thread 3

Waiting:
Thread 2

lock

check

increment

Thread 1 must increment first!

Blocked:
Thread 3

0

essentials

95

1

Counter

1

Thread 1

0

Thread 2

Thread 3

lock

check

increment

notify

Thread 1 must increment first!

Blocked:
Thread 3

0

essentials

96

1

Counter

1

Thread 1

0

Thread 2

Thread 3

lock

check

increment

notifyAll

unlock

Thread 1 must increment first!

Blocked:
Thread 3

0

essentials

Task E – Atomic counter

Implement a thread safe version of the Counter in AtomicCounter.
In this version we will use an implementation of the int primitive
value, called AtomicInteger, that can be safely used from multiple
threads.

97

Atomic Variables

98

➔Set of classes providing implementation of atomic variables in
Java, e.g., AtomicInteger, AtomicLong, ...

➔An operation is atomic if no other thread can see it partially
executed. Atomic as in “appears indivisible”.

➔ Implemented using special hardware primitives (instructions) for
concurrency. Will be covered in detail later in the course.

details

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/atomic/AtomicInteger.html

Task F – Atomic vs Synchronized counter

Experimentally compare the AtomicCounter and
SynchronizedCounter implementations by measuring which one is
faster. Observe the differences in the CPU load between the two
versions. Can you explain what is the cause of different
performance characteristics?

- Vary the load per thread

- Vary the number of threads

99

essentials

Task G

Implement a thread that measures execution progress. That is,
create a thread that observes the values of the Counter during the
execution and prints them to the console. Make sure that the
thread is properly terminated once all the work is done
[thread.interrupt()].

100

101

10

Counter

10

Thread 1

0

Thread 2

0

Thread 3

increment()

Printer

essentials

102

10

Counter

10

Thread 1

0

Thread 2

0

Thread 3

Print

10!

Printer value()

essentials

103

15

Counter

10

Thread 1

0

Thread 2

5

Thread 3

increment()

Printer

essentials

104

25

Counter

10

Thread 1

10

Thread 2

5

Thread 3

increment()

Printer

essentials

105

25

Counter

10

Thread 1

10

Thread 2

5

Thread 3

Print

25!

Printer value()

essentials

106

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

increment()

Printer

essentials

107

30

Counter

10

Thread 1

10

Thread 2

10

Thread 3

Print

30!

Printer value()

essentials

Homework Assignments

I highly recommend doing the homework assignments

→ Check and deepen your knowledge

→ Feedback: Push to GitLab and then message me

108

	Slide 1: Parallel Programming Exercise Session 3
	Slide 2: Today
	Slide 3: Post-Discussion Exercise 2
	Slide 4: Task A
	Slide 5: Task A
	Slide 6: Task A
	Slide 7: Task B
	Slide 8: Task C: Thread with no Task
	Slide 9: Task C: Thread with no Task
	Slide 10: Task D
	Slide 11: Task D
	Slide 12: Task D: PartitionData
	Slide 13: Task E: Sharing Data Across Threads
	Slide 14: Task F: Execution Speed-Up
	Slide 15: Task F: Execution Speed-Up
	Slide 16: Theory Recap
	Slide 17: Counter
	Slide 18: Counter
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Counter
	Slide 29: Remember: Data Races
	Slide 30: Data Race
	Slide 31: Synchronization
	Slide 32: Synchronization
	Slide 33: Using `synchronized`
	Slide 34: What exactly is a lock/monitor?
	Slide 35: What exactly is a lock/monitor?
	Slide 36: What exactly is a lock/monitor?
	Slide 37: What exactly is a lock/monitor?
	Slide 38: What exactly is a lock/monitor?
	Slide 39: Remember: Java Thread State Model
	Slide 40: What exactly is a lock/monitor?
	Slide 41: What exactly is a lock/monitor?
	Slide 42: What exactly is a lock/monitor?
	Slide 43: What exactly is a lock/monitor?
	Slide 44: What exactly is a lock/monitor?
	Slide 45: Locks are specific to Object/Class
	Slide 46: Locks are specific to Object/Class
	Slide 47: Locks are specific to Object/Class
	Slide 48: Locks are specific to Object/Class
	Slide 49: Bad Practices With Synchronization
	Slide 50: Good or not good?
	Slide 51: Java String Pool
	Slide 52: Good or not good?
	Slide 53: Good or not good?
	Slide 54: Good or not good?
	Slide 55: Good or not good?
	Slide 56: Wait and Notify Recap
	Slide 57: But… why?
	Slide 58: Producer-Consumer Problem
	Slide 59: The Buffer
	Slide 60: The Producer
	Slide 61: The Consumer
	Slide 62: The Consumer
	Slide 63: How about now?
	Slide 64: How about now?
	Slide 65: Solution? Use wait/notify!
	Slide 66: Wait and Notify Recap
	Slide 67: Wait and Notify Recap
	Slide 68: Wait and Notify Recap
	Slide 69: Reentrant
	Slide 70: Reentrant
	Slide 75: Past Exam Task
	Slide 76: Past Exam Task
	Slide 77: Past Exam Task
	Slide 78: Past Exam Task
	Slide 79
	Slide 80: Pre-Discussion Exercise 3
	Slide 81: Counter
	Slide 82: Task A – Sequential counter
	Slide 83: Task A – Parallel counter
	Slide 84: Task B – Synchronized counter
	Slide 85: Task C
	Slide 86: Task D
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97: Task E – Atomic counter
	Slide 98: Atomic Variables
	Slide 99: Task F – Atomic vs Synchronized counter
	Slide 100: Task G
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108: Homework Assignments

