Parallel Programming
Exercise Session 3

Spring 2025

Today

Post-Discussion Exercise 2
Theory Recap
Quiz

Pre-Discussion Exercise 3

Post-Discussion
Exercise 2

Task A

public static void taskA() {
Thread t = new Thread(new Runnable() {
@Override
public void run() {
System.out.println("Hello Thread!");
System.out.println("Its printed from "+Thread.currentThread().getName());

}
});

t.start();

try { |
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
3

Task A

public static void taskA() { What happens if we Change
Thread t = new Thread(new Runnable() {
@Override t.StaI’t() tO t.run()?

public void run() {
System.out.println("Hello Thread!");
System.out.println("Its printed from "+Thread.currentThread().getName());

}
});

t.start();

try { |
t.join();
} catch (InterruptedException e) {
e.printStackTrace();
}
}

Task A

t.start(); W Conscloi>x

<terminated> Main [Java Application] /Users/sarahkuhn/.p2/pool/plugins/org.eclipse.justj.openjdk.hotspot.jre.full.macosx.)

Hello Thread!
Its printed from Thread-@

& Console X

t run(). <terminated> Main [Java Application] /Users/sarahkuhn/.p2/pool/plugins/org.eclipse.justj.openjdk.hotspot.jre.full.macosx.
) ’ Hello Thread!

Its printed from main

Task B

Run computePrimeFactors: main thread vs. single other thread
There should not be any noticeable difference

What about Overhead?
Overhead of a single Thread is not significant

Use a lot of threads = Overhead sums up = Overhead takes up
noticeable amount

Task C: Thread with no Task

public static class EmptyTask implements Runnable{

a0verride
public void run() {3}

public static long taskC() {
long start = System.nanoTime();
Thread t new Thread(new EmptyTask());
t.start();
long end System.nanoTime();
return (end-start);

Task C: Thread with no Task

public static long taskC() {
long start = System.nanoTime();
Thread t = new Thread(); //no Task!

t.start();
long end = System.nanoTime();
return (end-start);

Task D

public static class ArraySplit {
public final int startlIndex;
public final int Llength;

ArraySplit(int startIndex, int length
this.startIndex = startIndex;
this.length = length;

10

Task D

public static ArraySplit[] PartitionData(int length, int numPartitions)
ArraySplit[] partitions = new ArraySplit[numPartitions];

int chunkSize = Math.max(a:1, length / numPartitions);
int assignedInput = 0;
for (int i = @; i < numPartitions; i++

int reimainingInput = length - assignedInput;

int inputSize = Math.min(chunkSize, reimainingInput);

if (i == numPartitions - 1) {

inputSize = reimainingInput;
}

partitions[i] = new ArraySplit(assignedInput, inputSize);

assignedInput += inputSize;

return partitions;

Task D: PartitionData

In real world: use existing libraries. well tested, concise, fast (e.g.
parallel streams for Java)

Think about edge cases: What if more Threads than values?

12

Task E: Sharing Data Across Threads

demo SharedData

(need this for E)

Task F: Execution Speed-Up

Execution Time (ms)

103}

102}

10t}

100}

Execution Time vs. Number of Threads for Different Array Sizes

Array Size: 100
Array Size: 1000
Array Size: 10000
Array Size: 100000

Array Size: 10000000
Array Size: 100000000

——
——
——
—e— Array Size: 1000000
+
——

1 2 4 8 16 32 64 128 256 512
Number of Threads

14

Task F: Execution Speed-Up

Small arrays: increasing number of threads does not improve
performance due to thread management overhead.

Large arrays: speed-up converges with a certain number of
threads.

At very high thread counts, overhead dominates, causing
execution time to increase.

Theory Recap

Counter

Let’s count the number of times a given event occurs

public interface Counter {
public void increment();
public int value();

}

17

Counter

Let’s count the number of times a given event occurs

// background threads
for (int i = ©0; i < numIterations; i++) {
// perform some worR
public interface Counter {
public void increment(); counter. increment();
public int value(); }

}
// progress thread

while (isWorking) {
System.out.println(counter.value());

}

18

10 iterations each Thread 1

0
Counter Thread 2
0 0
Thread 3
0
value of the number of times

shared Counter increment() is called

Thread 1

0
Counter Thread 2
0 0
Thread 3
0
value of the number of times

shared Counter increment() is called

Thread 1

1
Counter Thread 2
0 0
Thread 3
0
value of the number of times

shared Counter increment() is called

Thread 1

1
Increment()
Counter Thread 2
1 0
Thread 3
0
value of the number of times

shared Counter increment() is called

Thread 1

10
Increment()
Counter Thread 2
10 0
Thread 3
0
value of the number of times

shared Counter increment() is called

Thread 1

10
Counter Thread 2
15 0
Increment()
Thread 3
5
value of the number of times

shared Counter increment() is called

Thread 1

10
Counter Thread 2
| t0)
25 incremen 10
Thread 3
5
value of the number of times

shared Counter increment() is called

Thread 1

10
Counter Thread 2
30 10
Increment()
Thread 3
10
value of the number of times

shared Counter increment() is called

Main

read the
Counter value

Counter

30

value()

value of the
shared Counter

Thread 1

10

Thread 2

10

Thread 3

10

number of times
increment () is called

27

essentials

Counter

Why will what we just saw probably not work?

custom

Remember: Data Races

Assume we have two threads executing increment() n-times
concurrently.

public class Counter {

int count = 0;

public void i1ncrement () {

count++;

29

Data Race

count ==

Thread A

Read count ==
tmp =count + 1

count = tmp

Thread B

Read count == 0

tmp =count+ 1
count =tmp

count ==

custom

essentials

Synchronization

-> Every reference type contains a lock inherited from the Object
class

=> Primitive fields can be locked only via their enclosing objects
=> Locking arrays does not lock their elements

-> A lock is automatically acquired when entering and released
when exiting a synchronized block

=> Locks will be covered in more detail later in the course

essentials

Synchronization

public synchronized void xMethod() { public void xMethod() {
// method body synchronized (this) {
} // method body
}
}

=> Synchronized method locks the object owning the method
foo.xMethod() //lock on foo

=> Synchronized keyword obtains a lock on the parameter object
synchronized (bar) { .. } //lock on bar

=> A thread can obtain multiple locks (by nesting the synchronized blocks)

32

custom

Using synchronized

Now only one thread at a time can enter the increment() method ©

public class Counter {

int count = 0;

public synchronized void increment () {

count++;

33

What exactly is a lock/monitor?

Counter C

Counter C = new Counter()

attributes

int count = 0;

methods

synchronized increment() ({

count++;

}

custom

Thread 1

Thread 2

Thread 3

34

custom

What exactly is a lock/monitor?

Counter C

Counter C = new Counter()

attributes

int count = 0;

methods

synchronized increment() ({

count++;

}

Thread 1

increment()

Thread 2

Thread 3

35

What exactly is a lock/monitor?

Counter C

Counter C = new Counter()

attributes

int count = 0;

methods

synchronized increment() {

count++;

}

custom

Thread 1

P count++

Thread 2

Thread 3

36

What exactly is a lock/monitor?

Counter C

Counter C = new Counter()

attributes

int count = 0;

methods

synchronized increment() {

count++;

}

Increment()

custom

Thread 1

P count++

Thread 2

Thread 3

37

What exactly is a lock/monitor?

Counter C

Counter C = new Counter()

attributes

int count = 0;

methods

synchronized increment() {

count++;

}

custom

Thread 1
P count++
Thread 2
BLOCKED
Thread 3

38

Remember: Java Thread State Model

Blocked » :
Waiting for CPU Getting CPU

y
Py
c
-
>
D
o
®

Waiting I

S

Timed waiting run() terminates

l Terminated

“not runnable®

custom

What exactly is a lock/monitor?

Thread 1
Counter C P count++
Counter C = new Counter()
attributes Thread 2
rea
int count = 0;
BLOCKED
methods increment()
synchronized increment() { Th read 3
count++;
}

40

What exactly is a lock/monitor?

Counter C

Counter C = new Counter()

attributes

int count = 0;

methods

synchronized increment() {

count++;

}

custom

Thread 1
P count++
Thread 2
BLOCKED
Thread 3

BLOCKED

41

What exactly is a lock/monitor?

Counter C

Counter C = new Counter()

attributes

int count = 0;

methods

synchronized increment() {

count++;

}

custom

Thread 1
P DONE!
Thread 2
BLOCKED
Thread 3

BLOCKED

42

custom

What exactly is a lock/monitor?

Thread 1
Counter C DONE!
Counter C = new Counter()
attributes
Thread 2
int count = 0;
BLOCKED
methods
synchronized increment() { Th read 3
count++;
}
BLOCKED

43

What exactly is a lock/monitor?
THIS LOCK IS SPECIFIC TO THE OBJECT!

Counter C

Counter C = new Counter()

attributes

int count = 0;

methods

synchronized increment() {

count++;

}

custom

Thread 1

DONE!
Thread 2

BLOCKED
Thread 3

P count++

44

custom

Locks are specific to Object/Class

Thread 1
Counter C Counter D
Counter C = new Counter() Counter D = new Counter()
attributes attributes
int count = 0; int count = 0;
Thread 2
methods methods

synchronized increment() { synchronized increment() {

count++; count++;

} }

/ Thread 3

Counter CLASS

class Counter {}

static attributes static methods

static int var = X; static void func()..
45

Locks are specific to Object/Class

Counter C

Counter C = new Counter()

attributes

int count = 0;

methods

void incrementD () ({

synchronize (D) ({

}
}

Counter D

Counter D = new Counter()

attributes

int count = 0;

methods

void incrementC() ({

synchronize (C) {

}
}

o

custom

Thread 1

Thread 2

Thread 3

46

Locks are specific to Object/Class

Counter C

Counter C = new Counter()

attributes

int count = 0;

methods

void incrementD () ({

synchronize (D) ({

}
}

Counter D

Counter D = new Counter()

attributes

int count = 0;

methods

void incrementC() ({

synchronize (C) {

}
}

incrementC()

o

custom

Thread 1

Thread 2

Thread 3

47

Locks are specific to Object/Class

Counter C

Counter C = new Counter()

attributes

int count = 0;

methods

void incrementD () ({

synchronize (D) ({

}
}

Counter D

Counter D = new Counter()

attributes

int count = 0;

methods

void incrementC() ({

synchronize (C) {

}
}

custom

Thread 1

P count++

Thread 2

Thread 3

48

custom

Bad Practices With Synchronization

Do NOT synchronize on:
Literals
Boxed Primitives

custom

Good or not good?

String stringlLock = "LOCK_STRING";

public void badOrGood() {
synchronized (stringlLock) {
//

50

Java String Pool

String a = “PPROG24”

Java Heap

String Pool

String b = “PPROG24”

String ¢ = “pprog24”

String d = new String(“PPROG24")

String e = new String(“PPROG24")

‘PPROG24"

‘PPROG24”

‘PPROG24"

custom

51

custom

Good or not good?

00

String stringLock = new String("LOCK_STRING");

public void badOrGood() {
synchronized (stringlLock) {
//
¥

52

custom

Good or not good?

Integer intLock = 7;

public void badOrGood() {
synchronized (intLock) {
/...

}

53

custom

Good or not good?

Assume this computation
int counter = 0; takes *a lot* of time

public void badOrGood() {
synchronized (this) {
Result r = someHeavyComputation();

counter += r.value();

54

custom

Good or not good?

Try keeping your critical

section as small as possible!

55

essentials

Wait and Notify Recap

Object (lock) provides wait and notify methods
(any object is a lock)

walt: Thread must own object’s lock to call wait
thread releases lock and is added to “waiting list” for that object

thread waits until notifyis called on the object

notify: Thread must own object’s lock to call notify
notify: Wake one (arbitrary) thread from object’s “waiting list”
notifyAll: Wake all threads

But... why?

custom

Producer-Consumer Problem

Generating Data

Producer
Producer

Processing Data

Buffer

58

The Buffer

public class UnboundedBuffer {

public boolean isEmpty() { ... }
public void add(long value) { ... }
public long remove() { ... }

}

The Producer

public class Producer extends Thread {
private final UnboundedBuffer buffer;

public void run() {

while (true) {

prime = computeNextPrime(prime);
buffer.add(prime);

}
}
}

The Consumer

public class Consumer extends Thread {
private final UnboundedBuffer buffer;

public void run() {
while (true) {
while (buffer.isEmpty());
performLongRunningComputation(buffer.remove());

}
}

Where is the problem?

61

The Consumer

public class Consumer extends Thread {

private final UnboundedBuffer buffer; Bad |nter|eaVing!

public void run() {
while (true) {
while (buffer.isEmpty());
performLongRunningComputation(buffer.remove());

}
}

62

How about now?

public class Consumer extends Thread {

public void run() {
long prime;
while (true) {
synchronize (buffer) {
while (buffer.isEmpty());
prime = buffer.remove();
¥
performLongRunningComputation(prime);
}
}
}

public class Producer extends Thread {

}

public void run() {

}

while (true) {
prime = computeNextPrime(prime);
synchronize (buffer) {

}

}

buffer.add(prime);

63

How about now?

public class Consumer extends Thread {

public void run() {
long prime;
while (true) {
synchronize (buffer) {
while (buffer.isEmpty());
prime = buffer.remove();

}

performLongRunningComputation(prime);

}
}
}

Problem:

1. Consumer locks buffer (synchronize (buffer))

public class Producer extends Thread {
public void run() {

while (true) {
prime = computeNextPrime(prime);
synchronize (buffer) {
buffer.add(prime);

}
}
}
}

2. Consumer spins on isEmpty(), i.e. waits for producer to add item
3. Producer waits for lock to become available (synchronize (buffer))
4. = Deadlock! Consumer and producer wait for each other; no progress

Solution? Use wait/notify!

public class Consumer extends Thread {

public void run() {
long prime;
while (true) {
synchronize (buffer) {
while (buffer.isEmpty())
buffer.wait();
prime = buffer.remove();
}
performLongRunningComputation(prime);
}
}
}

buffer.wait():
1. Consumer thread goes to sleep
(status NOT RUNNABLE) ...
2. ... and gives up buffer’s lock

public class Producer extends Thread {
public void run() {

while (true) {
prime = computeNextPrime(prime);
synchronize (buffer) {
buffer.add(prime);
buffer.notifyAll();

}
}
}
}

buffer.notifyAll():
1. All threads waiting for

buffer’s lock are woken up
(status RUNNABLE)

essentials

Wait and Notify Recap

(condition) { (condition) {

counter.wait(); counter.wait();

What is the difference? Issues?

66

essentials

Wait and Notify Recap

(condition) { (condition) {

counter.wait(); counter.wait();

Spurious wake-ups and notifyAll()
- wait hastobeinawhile loop

67

Wait and Notify Recap

public class Object ({

public
public
public

public
publie

throws InterruptedException ({

final
final

final
final
final

native void notify();
native void notifyAll();

native void wait(long timeout) throws InterruptedException;
void wait() throws InterruptedException { wait(0); }

void wait (long timeout,

int nanos)

)

wait() releases object lock, thread waits on internal queue

notify() wakes the highest-priority thread closest to front of object’s internal queue

notifyAll() wakes up all waiting threads
 Threads non-deterministically compete for access to object
e May not be fair (low-priority threads may never get access)

May only be called when object is locked (e.g. inside synchronize)

68

details

Reentrant

Java locks are reentrant

A thread can hold a lock more than once
Also have to release multiple times

custom

Reentrant

Thread 1

Counter C

Counter C = new Counter()

increment()

Thread 2

Thread 3

70

essentials

Past Exam Task

Kreuzen Sie alle korrekten Aussagen iiber die Mark all correct statements regarding

the execution of Java Threads.

Ausfithrung von Java Threads an.

(O Die start() Methode in
t = new Thread(); t.start() ruft
automatisch auch die run() methode auf.

O Die run() Methode in
t = new Thread(); t.run() erzeugt
einen neuen Thread und fithrt diesen aus.

(O Ein Codeblock mit mehreren Threads wird
immer deterministisch ausgefiihrt. D.h. der
Output 1st immer exakt der gleiche.

(O Ein komplett serieller Codeblock kann zur
Beschleunigung auf mehreren Prozessoren
ausgefiihrt werden.

Rep. Exam, FS 2023

The start() method in
t = new Thread(); t.start()
automatically also calls the run()
method.

The run() method in
t = new Thread(); t.run() cre-
ates a new thread and executes the
thread.

A codeblock with several threads is al-
ways executed deterministically. That
means the output is always the same.

A fully serial block of code can be run
on multiple processors to speedup exe-
cution.

75

essentials

Past Exam Task

Kreuzen Sie alle korrekten Aussagen iiber die ~ Mark all correct statements regarding

Ausfithrung von Java Threads an. the execution of Java Threads.

J/ Die start () Methode in
t = new Thread(); t.start() ruft
automatisch auch die run() methode
auf.

(O Die run() Methode in
t = new Thread(); t.run() erzeugt
einen neuen Thread und fiihrt diesen aus.

(O Ein Codeblock mit mehreren Threads wird
immer deterministisch ausgefiihrt. D.h. der
Output ist immer exakt der gleiche.

(O Ein komplett serieller Codeblock kann zur
Beschleunigung auf mehreren Prozessoren
ausgefiihrt werden.

Rep. Exam, FS 2023

The start() method in
t = new Thread(); t.start()
automatically also calls the run()
method.

The run() method in
t = new Thread(); t.run() cre-
ates a new thread and executes the
thread.

A codeblock with several threads is al-
ways executed deterministically. That
means the output is always the same.

A fully serial block of code can be run
on multiple processors to speedup exe-
cution.

76

essentials

Past Exam Task

c) Wozu dient die join() Methode in Java What is the purpose of the join() 2
J T
Threads? method in Java Threads?.

(O Um eine Prioritdtenreihenfolge zwischen To enforce a priority order among mul-
mehreren Threads zu erzwingen. tiple threads.

(O Um das von dem aktuellen Thread gehalte- To release the lock held by the current
ne Lock freizugeben. thread.

(O Um die Ausfithrung des aktuellen Threads To pause the current thread’s execution
anzuhalten, bis der Thread, den er joined, until the thread it joins completes.
abgeschlossen ist.

(O Um die Kontrolle an einen anderen Thread To transfer control to another thread
zu iibergeben, ohne auf dessen Abschluss zu without waiting for its completion.
warten.

Rep. Exam, FS 2023 77

essentials

Past Exam Task

(c) Wozu dient die join() Methode in Java What is the purpose of the join() (2)
Threads? method in Java Threads?”.

(O Um eine Prioritidtenreihenfolge zwischen To enforce a priority order among mul-
mehreren Threads zu erzwingen. tiple threads.

(O Um das von dem aktuellen Thread gehalte- To release the lock held by the current
ne Lock freizugeben. thread.

v/ Um die Ausfithrung des aktuellen To pause the current thread’s execution
Threads anzuhalten, bis der Thread, until the thread it joins completes.
den er joined, abgeschlossen ist.

(O Um die Kontrolle an einen anderen Thread To transfer control to another thread

zu iibergeben, ohne auf dessen Abschluss zu without waiting for its completion.
warten.

Rep. Exam, FS 2023 78

Pre-Discussion
Exercise 3

Counter

There are many threads accessing the counter at the same time.
How should we implement it such that there are no conflicts?
You will try different solutions including:

=>Task A: SequentialCounter
=>Task B: SynchronizedCounter
=>Task E (optional): AtomicCounter

Task A —Sequential counter

=> Implement a sequential version of the Counter in
SequentialCounter class that does not use any synchronization.

->|n taskASequential we provide a method that runs a single thread
which increments the counter. Inspect the code and understand
how it works.

=>Verify that the SequentialCounter works properly when used
with a single thread (the test testSequentialCounter should pass).

essentials

Task A — Parallel counter

-> Run the code in taskAParallel which creates several threads that
all try to increment the counter at the same time.

=> Will this work? What will happen?

Task B — Synchronized counter

=>|mplement a different thread safe version of the Counter in
SynchronizedCounter. In this version use the standard primitive
type int but synchronize the access to the variable by inserting
synchronized blocks.

=> Run the code in taskB.

essentials

Task C

Whenever the Counter is incremented, keep track which thread
performed the increment (you can print out the thread-id to the
console). Observe how the threads are scheduled and discuss the
factors that might influence this behavior.

essentials

Task D

=> Implement a FairThreadCounter that ensures that different
threads increment the Counter in a round-robin fashion. In
round-robin scheduling the threads perform the increments in
circular order. That is, two threads with ids 1 and 2 would
increment the value in the following order 1, 2, 1, 2, 1, 2, etc.

=>You should implement the scheduling using the wait and notify
methods.

=> Can you think of implementation that does not use wait and
notify methods?

Thread 1 must increment first!

Counter

0

Thread 1

0

Thread 2

0

Thread 3

0

essentials

Thread 1 must increment first!

Counter

0

lock

Thread 1

0

Thread 2

0

Thread 3

0

essentials

Thread 1 must increment first! Thread 1
0
lock
Counter Thread 2

Blocked:

Thread 3 .
lock failed

Thread 3

essentials

89

Thread 1 must increment first!

Blocked:
Thread 3

Counter

lock
check

Thread 1

0

Thread 2

Thread 3

essentials

90

Thread 1 must increment first!

Waiting: Counter
Thread 2

Blocked: O
Thread 3

lock
check
wait

Thread 1

0

Thread 2

0

Thread 3

essentials

91

essentials

Thread 1

Thread 1 must increment first! lock

Counter

Waiting:
Thread 2

Thread 2

Blocked:
Thread 3

Thread 3

Both Thead 1 and Thread 3 could obtain lock.
Let’'s assume Thread 1 succeeds.

92

essentials

Thread 1

Thread 1 must increment first! lock

check

Counter

Waiting:
Thread 2

Thread 2

Blocked:
Thread 3

Thread 3

93

essentials

Thread 1

Thread 1 must increment first! lock

check
increment

Counter

Waiting:
Thread 2

Thread 2

Blocked:
Thread 3

Thread 3

94

essentials

Thread 1 must increment first! lock Thread 1
check
increment
notify
Counter
Thread 2
Blocked: O
Thread 3

Thread 3

95

essentials

Thread 1

Thread 1 must increment first! lock

check
Increment
notifyAll
unlock

Counter Thread 2

Blocked: 1 O

Thread 3

Thread 3

96

Task E — Atomic counter

Implement a thread safe version of the Counter in AtomicCounter.
In this version we will use an implementation of the int primitive
value, called Atomicinteger, that can be safely used from multiple

threads.

details

Atomic Variables

=> Set of classes providing implementation of atomic variables in
Java, e.g., Atomicinteger, AtomicLong, ...

=> An operation is atomic if no other thread can see it partially
executed. Atomic as in “appears indivisible”.

=> Implemented using special hardware primitives (instructions) for
concurrency. Will be covered in detail later in the course.

98

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/concurrent/atomic/AtomicInteger.html

essentials

Task F — Atomic vs Synchronized counter

Experimentally compare the AtomicCounter and
SynchronizedCounter implementations by measuring which one is
faster. Observe the differences in the CPU load between the two
versions. Can you explain what is the cause of different
performance characteristics?

- Vary the load per thread
- Vary the number of threads

Task G

Implement a thread that measures execution progress. That is,
create a thread that observes the values of the Counter during the
execution and prints them to the console. Make sure that the
thread is properly terminated once all the work is done

[thread.interrupt()].

Printer

Counter

10

Increment()

Thread 1

10

Thread 2

0

Thread 3

0

essentials

Counter

10

Printer / value()

Print
10!

Thread 1

10

Thread 2

0

Thread 3

0

essentials

Printer

Counter

15

Increment()

Thread 1

10

Thread 2

0

Thread 3

5

essentials

Printer

Counter

25

Increment()

Thread 1

10

Thread 2

10

Thread 3

5

essentials

Counter

25

Printer / value()

Print
25!

Thread 1

10

Thread 2

10

Thread 3

5

essentials

Printer

Counter

30

increment()

Thread 1

10

Thread 2

10

Thread 3

10

essentials

Counter

30

Printer / value()

Print
30!

Thread 1

10

Thread 2

10

Thread 3

10

essentials

Homework Assignments

| highly recommend doing the homework assighments
> Check and deepen your knowledge
> Feedback: Push to GitLab and then message me

	Slide 1: Parallel Programming Exercise Session 3
	Slide 2: Today
	Slide 3: Post-Discussion Exercise 2
	Slide 4: Task A
	Slide 5: Task A
	Slide 6: Task A
	Slide 7: Task B
	Slide 8: Task C: Thread with no Task
	Slide 9: Task C: Thread with no Task
	Slide 10: Task D
	Slide 11: Task D
	Slide 12: Task D: PartitionData
	Slide 13: Task E: Sharing Data Across Threads
	Slide 14: Task F: Execution Speed-Up
	Slide 15: Task F: Execution Speed-Up
	Slide 16: Theory Recap
	Slide 17: Counter
	Slide 18: Counter
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Counter
	Slide 29: Remember: Data Races
	Slide 30: Data Race
	Slide 31: Synchronization
	Slide 32: Synchronization
	Slide 33: Using `synchronized`
	Slide 34: What exactly is a lock/monitor?
	Slide 35: What exactly is a lock/monitor?
	Slide 36: What exactly is a lock/monitor?
	Slide 37: What exactly is a lock/monitor?
	Slide 38: What exactly is a lock/monitor?
	Slide 39: Remember: Java Thread State Model
	Slide 40: What exactly is a lock/monitor?
	Slide 41: What exactly is a lock/monitor?
	Slide 42: What exactly is a lock/monitor?
	Slide 43: What exactly is a lock/monitor?
	Slide 44: What exactly is a lock/monitor?
	Slide 45: Locks are specific to Object/Class
	Slide 46: Locks are specific to Object/Class
	Slide 47: Locks are specific to Object/Class
	Slide 48: Locks are specific to Object/Class
	Slide 49: Bad Practices With Synchronization
	Slide 50: Good or not good?
	Slide 51: Java String Pool
	Slide 52: Good or not good?
	Slide 53: Good or not good?
	Slide 54: Good or not good?
	Slide 55: Good or not good?
	Slide 56: Wait and Notify Recap
	Slide 57: But… why?
	Slide 58: Producer-Consumer Problem
	Slide 59: The Buffer
	Slide 60: The Producer
	Slide 61: The Consumer
	Slide 62: The Consumer
	Slide 63: How about now?
	Slide 64: How about now?
	Slide 65: Solution? Use wait/notify!
	Slide 66: Wait and Notify Recap
	Slide 67: Wait and Notify Recap
	Slide 68: Wait and Notify Recap
	Slide 69: Reentrant
	Slide 70: Reentrant
	Slide 75: Past Exam Task
	Slide 76: Past Exam Task
	Slide 77: Past Exam Task
	Slide 78: Past Exam Task
	Slide 79
	Slide 80: Pre-Discussion Exercise 3
	Slide 81: Counter
	Slide 82: Task A – Sequential counter
	Slide 83: Task A – Parallel counter
	Slide 84: Task B – Synchronized counter
	Slide 85: Task C
	Slide 86: Task D
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97: Task E – Atomic counter
	Slide 98: Atomic Variables
	Slide 99: Task F – Atomic vs Synchronized counter
	Slide 100: Task G
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108: Homework Assignments

