
Parallel Programming
Exercise Session 2
Spring 2025

Schedule

Motivation: Why Parallel Programming?

Theory Recap

Preparation assignment 2

Coding Remarks

Pre-Discussion assignment 2

Quiz

2

Why Parallel Programming?

Why Parallel Programming

• Solve problems faster

• Large problems→ divided into smaller ones→ executed in
parallel

• Programs for Supercomputers / High-Performance Computing
are highly parallel

4

custom

5

custom

Team RACKlette

• ETH Club about High-Performance Computing under Prof. T.
Hoefler and in collaboration with CSCS

• Optimizing, compiling code for HPC clusters

• Understanding hardware and how to exploit that for speedup

6

custom

https://racklette.ethz.ch/ https://forms.gle/4zWgxXsMdd5DgCa76

Interested? Join us!

Theory Recap

Terminology

Overview:
https://cgl.ethz.ch/teaching/parallelprog25/pages/terminology.html

8

https://cgl.ethz.ch/teaching/parallelprog25/pages/terminology.html

Sequential vs Concurrent vs Parallel

Concurrency:
Dealing with multiple things at the same time.

Parallelism:
Doing multiple things at the same time.

9

custom

Sequential vs Concurrent vs Parallel

10

custom

Thread Definition

An independent (i.e., capable of running in parallel) unit of
computation that executes code.

Each thread is like a running sequential program,

but a thread can create other threads

that are then part of the same program.

Those threads can create more threads etc.

11

essentials

Thread Definition Advanced

Concept of threads exists on various levels:

• Hardware (CPU)

• Operating systems

• Programming languages

• Java: Thread class

12

essentials

Thread Properties (in our course)

• Threads can create other threads

• Shared memory (changes to variables by threads are visible to
other Threads)

• Threads (from same class) execute same program but with
different arguments

• Communication between threads: Writing fields of shared
objects

13

essentials

14

custom

Life cycle of a Thread

15

New

RunningRunnable

Terminated

run() terminates

start()

active state

Waiting for CPU Getting CPU
Blocked

“not runnable“

Waiting

Timed waiting

Waiting for notification

Notification acquired

Daemon vs non-daemon threads

Daemon threads
low priority threads

Non-daemon / user threads
high priority threads

JVM process stops when all non-daemon threads terminate

16

custom

Daemon vs non-daemon threads

• Creating a new thread from a daemon thread leads to a daemon
thread

• Creating a new thread from a non-daemon thread leads to a non-
daemon thread

• Manually set daemon / non-daemon status before .start() with
.setDaemon([true | false])

• Check if a thread is daemon with .isDaemon();

17

custom

Preparation Exercise 2

Preparations

1. Import assignment2.zip in Eclipse

2. Run the projects unit-tests in Eclipse

3. Understand output of unit-tests
• Did the test fail or succeed?

• Why did the test fail?

4. Start coding and keep checking if tests pass

19

Eclipse: import project

20

Eclipse: import project

21

Eclipse: import project

22

Eclipse: add to git

23

Team -> Share Project ...

Eclipse: add to git

24

Important: Select same directory as for assignment 1
If you don’t have a repo yet, contact your TA

Eclipse: running JUnit tests (1)

25

Eclipse: running JUnit tests (2)

26

Your solution

(ideally)

Template

Coding Remarks

Code Style

• Try to make your code as readable as possible

• Include high-level comments that explain why you are doing
something (much better than a line-by-line commentary of your
code)

28

essentials

Code Style / Errors

Keep attention what Eclipse reports:

29

essentials

30

Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

We will use Java SE

Modules

https://docs.oracle.com/en/java/javase/17/docs/api/index.html

31

Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

Packages

https://docs.oracle.com/en/java/javase/21/docs/api/index.html

32

Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

Classes

https://docs.oracle.com/en/java/javase/11/docs/api/index.html

33

Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

Method
Signature

Semantic description
what the method does

Parameter description

Possible occurring
errors

https://docs.oracle.com/en/java/javase/21/docs/api/index.html

Pre-Discussion Exercise 2

Task A

To start with, print to the console "Hello Thread!" from a new
thread. How do you check that the statement was indeed printed
from a thread that is different to the main thread of your
application? Furthermore, ensure that your program (i.e., the
execution of main thread) finishes only after the thread execution
finishes.

35

essentials

Task A: How to create and start a new thread?

36

option 1: Extend class Thread

option 2: Implement Runnable

essentials

Demo

37

Task B

38

essentials

Task B

Run the method computePrimeFactors in a single thread other than
the main thread. Measure the execution time of sequential
execution (on the main thread) and execution using a single thread.
Is there any noticeable difference?

39

essentials

Task C

Design and run an experiment that would measure the overhead of
creating and executing a thread.

40

essentials

Task C

41

option 1: Measures real time elapsed including time when the thread is not running.

option 2: Measures thread cpu time excluding time when the thread is not running.

essentials

Task C

Measured execution time not always the same

→Average over multiple runs (the more the better)

→Calculate variance

42

essentials

Task D

Before you parallelize the loop in Task E, design how the work
should be split between the threads by implementing method
PartitionData. Each thread should process roughly equal amount of
elements. Briefly describe you solution and discuss alternative ways
to split the work.

43

essentials

Task D: Split the work between the threads

44

PartitionData(int length, int numPartitions) { … }

Input

length (20)

a) PartitionData(20,1)

b) PartitionData(20,2)

c) PartitionData(20,3)

?

?

?

essentials

Task D: Split the work between the threads

45

PartitionData(int length, int numPartitions) { … }

Input

length (20)

a) PartitionData(20,1)

b) PartitionData(20,2)

c) PartitionData(20,3)

d) PartitionData(20,3)

both c) and d) are correct solutions for this exercise

essentials

Task D

46

Several ways with different performance depending on task and
data

If input is random: Splitting the input into half works well

If input is sorted: 1. half finishes faster than 2. half
→maybe split on odd/even indices

details

Task D

• What about (length>0 and numPartitions>0) and length<numPartitions?
• ??
• ??

• And (length<=0 or numPartitions<=0)?
• ??
• ??

47

PartitionData(int length, int numPartitions) { … }

essentials

Task D

• What about (length>0 and numPartitions>0) and length<numPartitions?
• Throw an exception?
• Return m = min(m,n) splits?

• And (length<=0 or numPartitions<=0)?
• Throw an exception?
• Create a default return value (e.g. new ArraySplit[0])?

• In any case, write your assumptions in JavaDoc

48

PartitionData(int length, int numPartitions) { … }

essentials

Task E

Parallelize the loop execution in computePrimeFactors using a
configurable number of threads.

49

essentials

Task F

Think of how would a plot that shows the execution speed-up of
your implementation, for n = 1, 2, 4, 8, 16, 32, 64, 128 threads and
the input array size of 100, 1000, 10000, 100000 look like.

50

essentials

Task G

Measure the execution time of your parallel implementation for n =
1, 2, 4, 8, 16, 32, 64, 128 threads and the input array size of
input.length = 100, 1000, 10000, 100000. Discuss the differences in
the two plots from task F and G.

51

essentials

Speedup

Sub-linear: usually

Super-linear: not possible in theory, but

• Modern hardware properties (local/remote memory)
• Bug (this course assumes this)

52

essentials

Past Exam Task

53

essentials

Rep. Exam, FS 2023

Past Exam Task

54

essentials

Rep. Exam, FS 2023

	Slide 1: Parallel Programming Exercise Session 2
	Slide 2: Schedule
	Slide 3: Why Parallel Programming?
	Slide 4: Why Parallel Programming
	Slide 5
	Slide 6: Team RACKlette
	Slide 7: Theory Recap
	Slide 8: Terminology
	Slide 9: Sequential vs Concurrent vs Parallel
	Slide 10: Sequential vs Concurrent vs Parallel
	Slide 11: Thread Definition
	Slide 12: Thread Definition Advanced
	Slide 13: Thread Properties (in our course)
	Slide 14
	Slide 15: Life cycle of a Thread
	Slide 16: Daemon vs non-daemon threads
	Slide 17: Daemon vs non-daemon threads
	Slide 18: Preparation Exercise 2
	Slide 19: Preparations
	Slide 20: Eclipse: import project
	Slide 21: Eclipse: import project
	Slide 22: Eclipse: import project
	Slide 23: Eclipse: add to git
	Slide 24: Eclipse: add to git
	Slide 25: Eclipse: running JUnit tests (1)
	Slide 26: Eclipse: running JUnit tests (2)
	Slide 27: Coding Remarks
	Slide 28: Code Style
	Slide 29: Code Style / Errors
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Pre-Discussion Exercise 2
	Slide 35: Task A
	Slide 36: Task A: How to create and start a new thread?
	Slide 37: Demo
	Slide 38: Task B
	Slide 39: Task B
	Slide 40: Task C
	Slide 41: Task C
	Slide 42: Task C
	Slide 43: Task D
	Slide 44: Task D: Split the work between the threads
	Slide 45: Task D: Split the work between the threads
	Slide 46: Task D
	Slide 47: Task D
	Slide 48: Task D
	Slide 49: Task E
	Slide 50: Task F
	Slide 51: Task G
	Slide 52: Speedup
	Slide 53: Past Exam Task
	Slide 54: Past Exam Task
	Slide 55

