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About me

• Erxuan Li
• Bachelor 4th semester 
• erxuli@ethz.ch
• Discord: erxuanli
• https://erxuanli.com/teaching/fs25_pprog/
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Schedule

Motivation: Why Parallel Programming?

Theory

Quiz

Preparation assignment 2

Pre-Discussion assignment 2

Coding Remarks
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Why Parallel Programming?



Why Parallel Programming

• Solve problems faster

• Large problems→ divided into smaller ones→ executed in 
parallel

• Programs for Supercomputers / High-Performance Computing 
are highly parallel
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Team RACKlette

• ETH Club about High-Performance Computing under Prof. T. 
Hoefler and in collaboration with CSCS

• Optimizing, compiling code for HPC clusters

• Understanding hardware and how to exploit that for speedup
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https://racklette.ethz.ch/ https://forms.gle/4zWgxXsMdd5DgCa76

Interested? Join us!



Another example: Discord Bot

How a Discord Bot works (roughly):
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User sends 
command (e.g. 
!help, !news)

Bot processes 
the command

Bot responds
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Producer-Consumer Problem
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Sending Commands

Processing Commands

Command Queue

custom



Solution? More Threads!
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Sending Commands

Processing Commands

Command Queue

Ideally empty!
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Theory



Terminology

Overview: 
https://cgl.ethz.ch/teaching/parallelprog25/pages/terminology.html
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https://cgl.ethz.ch/teaching/parallelprog25/pages/terminology.html


Sequential vs Concurrent vs Parallel

Concurrency:
Dealing with multiple things at the same time.

Parallelism:
Doing multiple things at the same time.
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Sequential vs Concurrent vs Parallel
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Thread Definition

An independent (i.e., capable of running in parallel) unit of 
computation that executes code.

Each thread is like a running sequential program,

but a thread can create other threads

that are then part of the same program.

Those threads can create more threads etc.
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Thread Definition Advanced

Concept of threads exists on various levels:

• Hardware (CPU)

• Operating systems

• Programming languages 

• Java: Thread class
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Big Picture

17

custom



18

custom



Thread Properties    (in our course)

• Threads can create other threads

• Shared memory (changes to variables by threads are visible to 
other Threads)

• Threads (from same class) execute same program but with 
different arguments

• Communication between threads: Writing fields of shared 
objects
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Daemon vs non-daemon threads

Daemon threads
low priority threads

Non-daemon / user threads
high priority threads

JVM process stops when all non-daemon threads terminate
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Daemon vs non-daemon threads

• Creating a new thread from a daemon thread leads to a daemon
thread

• Creating a new thread from a non-daemon thread leads to a non-
daemon thread

• Manually set daemon / non-daemon status before .start() with
.setDaemon([true | false])

• Check if a thread is daemon with .isDaemon();
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Create Java Threads: Option 3 (lazy)

Inline 
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Life cycle of a Thread
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New

RunningRunnable

Terminated

run() terminates

start()

active state

Waiting for CPU Getting CPU
Blocked

“not runnable“

Waiting

Timed waiting

Waiting for notification

Notification acquired



Past Exam Task

26

essentials

Rep. Exam, FS 2023



Past Exam Task
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What can go wrong?

public class Counter { 

int count = 0; 

public void increment() { 

count = count + 1; // or count++;

}

}
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Assume we have two threads executing increment() n-times

concurrently.

custom



Data Race
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Thread A

Read count == 0

tmp = count + 1

count = tmp

custom

count == 0

Thread B

Read count == 0

tmp = count + 1

count = tmp

count == 1
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Speedup

Sub-linear: usually

Super-linear: not possible in theory, but

• Modern hardware properties (local/remote memory)
• Bug (this course assumes this)
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Speedup

32

custom





Preparation Exercise 2



Preparations

1. Import assignment2.zip in Eclipse

2. Run the projects unit-tests in Eclipse

3. Understand output of unit-tests
• Did the test fail or succeed?

• Why did the test fail?

4.  Start coding and keep checking if tests pass
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Eclipse: import project
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Eclipse: import project

37



Eclipse: import project
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Eclipse: add to git
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Team -> Share Project ...



Eclipse: add to git
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Important: Select same directory as for assignment 1
If you don’t have a repo yet, contact your TA



Eclipse: running JUnit tests (1)

41



Eclipse: running JUnit tests (2)
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Your solution

(ideally)

Template



Pre-Discussion Exercise 2



Task A

To start with, print to the console "Hello Thread!" from a new 
thread. How do you check that the statement was indeed printed 
from a thread that is different to the main thread of your 
application? Furthermore, ensure that your program (i.e., the 
execution of main thread) finishes only after the thread execution 
finishes.
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Task B
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Task B

Run the method computePrimeFactors in a single thread other than 
the main thread. Measure the execution time of sequential 
execution (on the main thread) and execution using a single thread. 
Is there any noticeable difference?
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Task C

Design and run an experiment that would measure the overhead of 
creating and executing a thread.
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Task C
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option 1: Measures real time elapsed including time when the thread is not running.

option 2: Measures thread cpu time excluding time when the thread is not running.

essentials



Task C

Measured execution time not always the same

→Average over multiple runs (the more the better)

→Calculate variance

49

essentials



Task D

Before you parallelize the loop in Task E, design how the work 
should be split between the threads by implementing method 
PartitionData. Each thread should process roughly equal amount of 
elements. Briefly describe you solution and discuss alternative ways 
to split the work.
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Task D: Split the work between the threads
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PartitionData(int length, int numPartitions) {  …  }

Input

length (20)

a) PartitionData(20,1)

b) PartitionData(20,2)

c) PartitionData(20,3)

?

?

?

essentials



Task D: Split the work between the threads
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PartitionData(int length, int numPartitions) {  …  }

Input

length (20)

a) PartitionData(20,1)

b) PartitionData(20,2)

c) PartitionData(20,3)

d) PartitionData(20,3)

both c) and d) are correct solutions for this exercise

essentials



Task D
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Several ways with different performance depending on task and 
data

If input is random: Splitting the input into half works well

If input is sorted: 1. half finishes faster than 2. half
→maybe split on odd/even indices

details



Task D

• What about (length>0 and numPartitions>0)  and length<numPartitions?
• ??
• ??

• And (length<=0 or numPartitions<=0)?
• ??
• ??
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PartitionData(int length, int numPartitions) {  …  }

essentials



Task D

• What about (length>0 and numPartitions>0)  and length<numPartitions?
• Throw an exception?
• Return m = min(m,n) splits?

• And (length<=0 or numPartitions<=0)?
• Throw an exception?
• Create a default return value (e.g. new ArraySplit[0])?

• In any case, write your assumptions in JavaDoc
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PartitionData(int length, int numPartitions) {  …  }

essentials



Task E

Parallelize the loop execution in computePrimeFactors using a 
configurable number of threads.
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Task F

Think of how would a plot that shows the execution speed-up of 
your implementation, for n = 1, 2, 4, 8, 16, 32, 64, 128 threads and 
the input array size of 100, 1000, 10000, 100000 look like.
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Task G

Measure the execution time of your parallel implementation for n = 
1, 2, 4, 8, 16, 32, 64, 128 threads and the input array size of 
input.length = 100, 1000, 10000, 100000. Discuss the differences in 
the two plots from task F and G.
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Coding Remarks



Code Style

• Try to make your code as readable as possible

• Include high-level comments that explain why you are doing 
something (much better than a line-by-line commentary of your 
code)
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Code Style / Errors 

Keep attention what Eclipse reports:
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Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

We will use Java SE

Modules

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
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Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

Packages

https://docs.oracle.com/en/java/javase/21/docs/api/index.html
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Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

Classes

https://docs.oracle.com/en/java/javase/11/docs/api/index.html
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Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

Method 
Signature

Semantic description 
what the method does

Parameter description

Possible occurring 
errors

https://docs.oracle.com/en/java/javase/21/docs/api/index.html


Feedback fürs Assignment

• Auf Gitlab pushen und mir dann eine Nachricht schreiben
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