
Parallel Programming
Exercise Session 2
Spring 2025

About me

• Erxuan Li
• Bachelor 4th semester
• erxuli@ethz.ch
• Discord: erxuanli
• https://erxuanli.com/teaching/fs25_pprog/

2

mailto:erxuli@ethz.ch

Schedule

Motivation: Why Parallel Programming?

Theory

Quiz

Preparation assignment 2

Pre-Discussion assignment 2

Coding Remarks

3

Why Parallel Programming?

Why Parallel Programming

• Solve problems faster

• Large problems→ divided into smaller ones→ executed in
parallel

• Programs for Supercomputers / High-Performance Computing
are highly parallel

5

custom

6

custom

Team RACKlette

• ETH Club about High-Performance Computing under Prof. T.
Hoefler and in collaboration with CSCS

• Optimizing, compiling code for HPC clusters

• Understanding hardware and how to exploit that for speedup

7

custom

https://racklette.ethz.ch/ https://forms.gle/4zWgxXsMdd5DgCa76

Interested? Join us!

Another example: Discord Bot

How a Discord Bot works (roughly):

8

User sends
command (e.g.
!help, !news)

Bot processes
the command

Bot responds

custom

Producer-Consumer Problem

9

Sending Commands

Processing Commands

Command Queue

custom

Solution? More Threads!

10

Sending Commands

Processing Commands

Command Queue

Ideally empty!

custom

Theory

Terminology

Overview:
https://cgl.ethz.ch/teaching/parallelprog25/pages/terminology.html

12

https://cgl.ethz.ch/teaching/parallelprog25/pages/terminology.html

Sequential vs Concurrent vs Parallel

Concurrency:
Dealing with multiple things at the same time.

Parallelism:
Doing multiple things at the same time.

13

custom

Sequential vs Concurrent vs Parallel

14

custom

Thread Definition

An independent (i.e., capable of running in parallel) unit of
computation that executes code.

Each thread is like a running sequential program,

but a thread can create other threads

that are then part of the same program.

Those threads can create more threads etc.

15

essentials

Thread Definition Advanced

Concept of threads exists on various levels:

• Hardware (CPU)

• Operating systems

• Programming languages

• Java: Thread class

16

essentials

Big Picture

17

custom

18

custom

Thread Properties (in our course)

• Threads can create other threads

• Shared memory (changes to variables by threads are visible to
other Threads)

• Threads (from same class) execute same program but with
different arguments

• Communication between threads: Writing fields of shared
objects

19

essentials

Daemon vs non-daemon threads

Daemon threads
low priority threads

Non-daemon / user threads
high priority threads

JVM process stops when all non-daemon threads terminate

20

custom

Daemon vs non-daemon threads

• Creating a new thread from a daemon thread leads to a daemon
thread

• Creating a new thread from a non-daemon thread leads to a non-
daemon thread

• Manually set daemon / non-daemon status before .start() with
.setDaemon([true | false])

• Check if a thread is daemon with .isDaemon();

21

custom

22

custom

23

custom

Create Java Threads: Option 3 (lazy)

Inline

24

custom

Life cycle of a Thread

25

New

RunningRunnable

Terminated

run() terminates

start()

active state

Waiting for CPU Getting CPU
Blocked

“not runnable“

Waiting

Timed waiting

Waiting for notification

Notification acquired

Past Exam Task

26

essentials

Rep. Exam, FS 2023

Past Exam Task

27

essentials

Rep. Exam, FS 2023

What can go wrong?

public class Counter {

int count = 0;

public void increment() {

count = count + 1; // or count++;

}

}

28

Assume we have two threads executing increment() n-times

concurrently.

custom

Data Race

29

Thread A

Read count == 0

tmp = count + 1

count = tmp

custom

count == 0

Thread B

Read count == 0

tmp = count + 1

count = tmp

count == 1

30

Demo

Speedup

Sub-linear: usually

Super-linear: not possible in theory, but

• Modern hardware properties (local/remote memory)
• Bug (this course assumes this)

31

essentials

Speedup

32

custom

Preparation Exercise 2

Preparations

1. Import assignment2.zip in Eclipse

2. Run the projects unit-tests in Eclipse

3. Understand output of unit-tests
• Did the test fail or succeed?

• Why did the test fail?

4. Start coding and keep checking if tests pass

35

Eclipse: import project

36

Eclipse: import project

37

Eclipse: import project

38

Eclipse: add to git

39

Team -> Share Project ...

Eclipse: add to git

40

Important: Select same directory as for assignment 1
If you don’t have a repo yet, contact your TA

Eclipse: running JUnit tests (1)

41

Eclipse: running JUnit tests (2)

42

Your solution

(ideally)

Template

Pre-Discussion Exercise 2

Task A

To start with, print to the console "Hello Thread!" from a new
thread. How do you check that the statement was indeed printed
from a thread that is different to the main thread of your
application? Furthermore, ensure that your program (i.e., the
execution of main thread) finishes only after the thread execution
finishes.

44

essentials

Task B

45

essentials

Task B

Run the method computePrimeFactors in a single thread other than
the main thread. Measure the execution time of sequential
execution (on the main thread) and execution using a single thread.
Is there any noticeable difference?

46

essentials

Task C

Design and run an experiment that would measure the overhead of
creating and executing a thread.

47

essentials

Task C

48

option 1: Measures real time elapsed including time when the thread is not running.

option 2: Measures thread cpu time excluding time when the thread is not running.

essentials

Task C

Measured execution time not always the same

→Average over multiple runs (the more the better)

→Calculate variance

49

essentials

Task D

Before you parallelize the loop in Task E, design how the work
should be split between the threads by implementing method
PartitionData. Each thread should process roughly equal amount of
elements. Briefly describe you solution and discuss alternative ways
to split the work.

50

essentials

Task D: Split the work between the threads

51

PartitionData(int length, int numPartitions) { … }

Input

length (20)

a) PartitionData(20,1)

b) PartitionData(20,2)

c) PartitionData(20,3)

?

?

?

essentials

Task D: Split the work between the threads

52

PartitionData(int length, int numPartitions) { … }

Input

length (20)

a) PartitionData(20,1)

b) PartitionData(20,2)

c) PartitionData(20,3)

d) PartitionData(20,3)

both c) and d) are correct solutions for this exercise

essentials

Task D

53

Several ways with different performance depending on task and
data

If input is random: Splitting the input into half works well

If input is sorted: 1. half finishes faster than 2. half
→maybe split on odd/even indices

details

Task D

• What about (length>0 and numPartitions>0) and length<numPartitions?
• ??
• ??

• And (length<=0 or numPartitions<=0)?
• ??
• ??

54

PartitionData(int length, int numPartitions) { … }

essentials

Task D

• What about (length>0 and numPartitions>0) and length<numPartitions?
• Throw an exception?
• Return m = min(m,n) splits?

• And (length<=0 or numPartitions<=0)?
• Throw an exception?
• Create a default return value (e.g. new ArraySplit[0])?

• In any case, write your assumptions in JavaDoc

55

PartitionData(int length, int numPartitions) { … }

essentials

Task E

Parallelize the loop execution in computePrimeFactors using a
configurable number of threads.

56

essentials

Task F

Think of how would a plot that shows the execution speed-up of
your implementation, for n = 1, 2, 4, 8, 16, 32, 64, 128 threads and
the input array size of 100, 1000, 10000, 100000 look like.

57

essentials

Task G

Measure the execution time of your parallel implementation for n =
1, 2, 4, 8, 16, 32, 64, 128 threads and the input array size of
input.length = 100, 1000, 10000, 100000. Discuss the differences in
the two plots from task F and G.

58

essentials

Coding Remarks

Code Style

• Try to make your code as readable as possible

• Include high-level comments that explain why you are doing
something (much better than a line-by-line commentary of your
code)

60

essentials

Code Style / Errors

Keep attention what Eclipse reports:

61

essentials

62

Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

We will use Java SE

Modules

https://docs.oracle.com/en/java/javase/17/docs/api/index.html

63

Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

Packages

https://docs.oracle.com/en/java/javase/21/docs/api/index.html

64

Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

Classes

https://docs.oracle.com/en/java/javase/11/docs/api/index.html

65

Java Doc (https://docs.oracle.com/en/java/javase/21/docs/api/index.html)

Method
Signature

Semantic description
what the method does

Parameter description

Possible occurring
errors

https://docs.oracle.com/en/java/javase/21/docs/api/index.html

Feedback fürs Assignment

• Auf Gitlab pushen und mir dann eine Nachricht schreiben

66

	Slide 1: Parallel Programming Exercise Session 2
	Slide 2: About me
	Slide 3: Schedule
	Slide 4: Why Parallel Programming?
	Slide 5: Why Parallel Programming
	Slide 6
	Slide 7: Team RACKlette
	Slide 8: Another example: Discord Bot
	Slide 9: Producer-Consumer Problem
	Slide 10: Solution? More Threads!
	Slide 11: Theory
	Slide 12: Terminology
	Slide 13: Sequential vs Concurrent vs Parallel
	Slide 14: Sequential vs Concurrent vs Parallel
	Slide 15: Thread Definition
	Slide 16: Thread Definition Advanced
	Slide 17: Big Picture
	Slide 18
	Slide 19: Thread Properties (in our course)
	Slide 20: Daemon vs non-daemon threads
	Slide 21: Daemon vs non-daemon threads
	Slide 22
	Slide 23
	Slide 24: Create Java Threads: Option 3 (lazy)
	Slide 25: Life cycle of a Thread
	Slide 26: Past Exam Task
	Slide 27: Past Exam Task
	Slide 28: What can go wrong?
	Slide 29: Data Race
	Slide 30
	Slide 31: Speedup
	Slide 32: Speedup
	Slide 33
	Slide 34: Preparation Exercise 2
	Slide 35: Preparations
	Slide 36: Eclipse: import project
	Slide 37: Eclipse: import project
	Slide 38: Eclipse: import project
	Slide 39: Eclipse: add to git
	Slide 40: Eclipse: add to git
	Slide 41: Eclipse: running JUnit tests (1)
	Slide 42: Eclipse: running JUnit tests (2)
	Slide 43: Pre-Discussion Exercise 2
	Slide 44: Task A
	Slide 45: Task B
	Slide 46: Task B
	Slide 47: Task C
	Slide 48: Task C
	Slide 49: Task C
	Slide 50: Task D
	Slide 51: Task D: Split the work between the threads
	Slide 52: Task D: Split the work between the threads
	Slide 53: Task D
	Slide 54: Task D
	Slide 55: Task D
	Slide 56: Task E
	Slide 57: Task F
	Slide 58: Task G
	Slide 59: Coding Remarks
	Slide 60: Code Style
	Slide 61: Code Style / Errors
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Feedback fürs Assignment

